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Abstract

The Antarctic Mesoscale Prediction System (AMPS) is currently the only real-

time, limited-area numerical weather prediction (NWP) model with a domain

over the Antarctic region. This study presents an overall evaluation of AMPS

by comparing its forecasts against dropsonde observations of temperature, dew

point temperature, and winds obtained during the Concordiasi field program be-

tween September and December of 2010. Concordiasi dropsonde profiles provide a

unique spacial and vertical coverage over the region where observations are tradi-

tionally provided at only a limited number of stations.

These comparisons reveal that biases in the model forecasts are greatest in the

boundary layer over the Antarctic continent, with warm, moist, and slow forecast

surface biases. In addition, over the continent, there are weak and shallow tem-

perature and dew point inversions, and slow low-level jets. Over the sea ice, there

is a warm and dry bias, at the same location where there is a known bias of low

cloud fraction within multiple NWP models. Furthermore, deep temperature and

dew point inversions are forecast in AMPS at early lead times, which strongly de-

pend on the initial conditions provided by the NCEP’s Global Data Assimilation

System.

We also present a comparison of AMPS to the Global Forecast System and the

ERA-Interim reanalysis. AMPS forecasts exhibit lower bias in forecasts of low-

level atmospheric features over the continent, in particular over the high plateau

x



region of Antarctica. However, ERA-Interim exhibits lower bias in forecasts of

low-level atmospheric features over the sea ice.
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Chapter 1

Introduction and Background

In recent decades, advances in computational power and numerical weather pre-

diction (NWP) have allowed for improved representation and future projections of

the atmospheric system through higher model resolution, improved data assimila-

tion techniques and more accurate parameterization schemes (Kalnay, 2003; Dee

et al., 2011). Despite such advancement, the skill of Antarctic NWP products

lag behind those in the lower-latitudes (World Meteorological Organization, 2013;

Tilley and Bromwich, 2005; Pendlebury et al., 2003). However, during this period,

the importance of accurate representation of Antarctic processes has become more

apparent for both weather and climate applications (Mayewski et al., 2009). With

the aim of improving the representation of Antarctic processes within NWP mod-

els, the Antarctic Mesoscale Prediction System (AMPS) was developed and began

producing forecasts in 2000 (Powers et al., 2012). This thesis approaches the is-

sue of poor Antarctic NWP models with the aim of evaluating and recommending

areas for which improvement in AMPS is required using a unique new dataset of

dropsondes produced during the Concordiasi field project (hereafter referred to as

Concordiasi; Rabier et al., 2013).
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1.1 Motivation

1.1.1 Antarctica

Since the inception of the satellite-era, the discovery of the ozone hole and other

such scientific steps forward, the importance of the Antarctic region in particular,

has grown in the scientific community, specifically with regard to global climate.

Given that the Antarctic ice sheet holds 90% of the global fresh water, Antarc-

tica holds significant societal importance due to its potential effects on sea level

rise (IPCC, 2013). Changes in climatic phenomena govern a large proportion

of the Antarctic ice-sheet’s mass balance changes. Warming Antarctic tempera-

tures, specifically in West Antarctica (Bromwich et al., 2013a; Turner et al., 2006;

Vaughan et al., 2003) where the ice sheet is most vulnerable (Oppenheimer, 1998),

contribute to decreases in the ice sheet’s mass. Climate change has also lead to

changes in atmospheric circulation, in particular to the Southern Annular Mode

(SAM) as shown by Arblaster and Meehl (2006). As discussed by Russell and Mc-

Gregor (2010) this contributes to atmospheric temperature changes. In addition,

Son et al. (2009) show that projected changes in ozone likely lead to an increase

in West Antarctic warming through alteration of the Southern Hemisphere atmo-

spheric circulation. Further, Bengtsson et al. (2006) show that there will likely

be a displacement of storm tracks poleward in the future. This leads to changes

in precipitation, whilst also affecting ocean currents that result in oceanic tem-

perature changes and melting of the ice sheet from below (Pritchard et al., 2012).

However, Steig et al. (2013) and Monaghan et al. (2008) show that warming tem-

peratures have caused increases in precipitation, partially offsetting the ice sheet’s

decrease in mass. Given the above, Antarctica’s climate, and therefore it’s ice

sheet mass balance, are clearly a complicated system that need to be studied in

order to estimate future sea level changes.
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Other issues concerning Antarctic meteorology stem from a lack of understand-

ing of polar processes, relative to those in lower-latitude regions, such as the dy-

namical, physical and chemical processes involved with clouds, gravity waves, the

boundary layer, katabatic flow, and polar lows. Bromwich et al. (2012) docu-

ment the current state of knowledge on tropospheric clouds in the Antarctic. In

this review study, they also emphasize the lack of knowledge of microphysical

and radiative properties in Antarctic clouds, relative to other regions. The scien-

tific communities understanding of orographic gravity waves, forced by the various

large orographic features in the Antarctic region, such as the mountain ranges of

the Antarctic peninsula and the Transantarctic Mountains, is poor (Plougonven

et al., 2013). In addition, their effects on other phenomena such as clouds (Alexan-

der et al., 2013) and the atmospheric circulation (McLandress et al., 2012) have

only recently been studied and the literature in these fields is still minimal. The

treatment of stable boundary layers (a common occurrence over the predominantly

ice-covered surfaces of Antarctica and the surrounding sea ice) lack a framework

of knowledge (King and Turner, 2007; Fernando and Weil, 2010; Bourassa et al.,

2013; Holtslag et al., 2013; Bromwich et al., 2012) since Monin-Obukhov similarity

theory breaks down in environments of strong stability (Ha et al., 2007). Other

Antarctic mesoscale phenomena such as katabatic flows and polar lows, and their

effects on the overall Antarctic environment are also poorly understood (World

Meteorological Organization, 2013). All these phenomena, among others, feed

back into the climate system through radiative processes, and changes to atmo-

spheric circulation and surface temperatures (Turner and Marshall, 2011; King and

Turner, 2007). Thus a detailed understanding and accurate, high resolution future

projections of all the above, are paramount to predicting future climates.
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A limiting factor in the understanding of many of the aforementioned Antarctic

atmospheric processes is the relative dearth of available observations in the Antarc-

tic (Barker, 2005; Nordeng et al., 2007; Powers, 2007; Bromwich et al., 2012). While

some advances have been made in the observation of Antarctic processes in the

past 50 years since the inception of meteorological satellites (Bromwich et al., 2007)

and automatic weather stations (AWS; Lazzara et al., 2012), few regular in-situ

observations are made. For example, upper air observations are key to a wide

array of research tasks including the long term measurement of climate processes,

short term measurements for analysis and forecasting, verification of remote sens-

ing observations (Wang et al., 2013a) and observations through which to gauge the

performance of, and evaluate NWP products. The scarcity of upper air observa-

tion sites in Figure 1.1 is evidence for the lack of in-situ observations, with only

around 10 sites regularly reporting at a frequency of twice daily. In comparison to

the contiguous United States (an area of approximately 10 million km2 relative to

Antarctica’s 14 million km2) with 92 regularly launching upper sites, Antarctica

has a very low density of upper air measurements.

1.1.2 Numerical Weather Prediction

In the absence of observations, NWP models can be used to fill the observation

voids while also producing forecasts of future weather. However, as earlier dis-

cussed, NWP performance in the Antarctic is relatively poor (Pendlebury et al.,

2003). This can be attributed to a number of NWP features that are only opti-

mized for use in lower-latitude regions (World Meteorological Organization, 2013).

Firstly, NWP coverage in Antarctica has in most cases been produced by global

models, with coarse resolutions and hydrostatic dynamical cores. However, at

high-latitudes, an increased coriolis force leads to a decreased Rossby radius of
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deformation and smaller synoptic scale disturbances. Further, there are an abun-

dance of mesoscale phenomena such as polar lows, and katabatic flows and oro-

graphic gravity waves forced by steep orography. To resolve such phenomena, small

grid-spacing and the accompanying non-hydrostatic dynamical cores are required.

Agosta et al. (2013) show that high resolution modeling is key to estimating the

ice-sheet mass balance with 30% simulated differences between 15- and 60-km grid

spacing. Moreover, Bouchard et al. (2010) discuss how improvements to grid struc-

tures can lead to improvement in NWP models over Antarctica. They show using

the ARPEGE (Action de Recherche Petite Echelle Grande Echelle; Deque et al.,

1994) model, that unphysical variations in model orography can be removed by

centering the grid on Antarctica. The development of limited area non-hydrostatic

NWP models has however, been focused on the tropics and mid-latitudes, since

convection is more prominent and the forecasting need for such models is greater.

Second, as discussed by Liu and Xiao (2013), current data-assimilation schemes

have not been developed to deal with the lack of observations in Antarctica.

Bouchard et al. (2010) recently showed how the addition of new satellite data

can improve assimilation in the Antarctic. Also, the implementation of new data

assimilation schemes in research has shown the inability of the current schemes

to deal with Antarctic conditions. Bouttier (1994) show how the problems with

Antarctic NWP, such as this lack of observations, and steep terrain may lead

to inhomogeneous background error covariance matrices, since errors are strongly

driven by dynamics. Further, Michel and Auligné (2010) show that background

error covariances are strongly effected by ocean and land boundaries surrounding

Antarctica. Liu and Xiao (2013) show how, for the forecast of a cyclone in the

Antarctic, a 4-dimensional ensemble based variational data assimilation scheme

can be used to improve on the WRF 3-dimensional variational scheme used in

5



AMPS. These studies emphasize the lack of skill current data assimilation schemes

have to deal with the complex Antarctic Antarctic environment.

Third, appropriate parameterization schemes that accurately approximate the

Antarctic atmosphere, as in lower-latitudes, have not been developed. Harsh,

extreme, and remote Antarctic conditions limit the number, location and dura-

tion of experiments, aimed at understanding the virtually ubiquitous surface of

snow and ice. Development of parameterization schemes based on such limited

data and understanding result in schemes that are designed only for certain areas

and seasons, that may not be representative of the annual conditions, and across

the wider continent. Boundary layers, gravity waves, and clouds, among other

Antarctic atmospheric processes and phenomena have all been shown to be poorly

parameterized by both operational and reanalysis NWP products.

For example, the Antarctic is often characterized by stable conditions. Holtslag

et al. (2013) and Fernando and Weil (2010) provide an overview of the challenges

faced in modeling stable boundary layers. These studies show that NWP models

produce too much vertical mixing, resulting in deeper than observed boundary

layers, too little turning of the wind with height, large downward sensible heat

fluxes and weak low-level maximum in wind speed (LLWM). These errors are

partially a result of the incorrect specification of surface fluxes (Bourassa et al.,

2013), and properties (Kuipers Munneke et al., 2011) of ice surfaces, associated

with un-specialized parameterizations for the Antarctic.

Alexander et al. (2013) give a broad overview of research pertaining to gravity

wave drag, and it’s effect on the global circulation. They discuss how gravity wave

parameterization is key to obtaining correct estimates within climate models. More

specifically, McLandress et al. (2012) show how poorly parameterized orographic

gravity waves generated in the Southern Hemisphere effect climate models, with

both tropospheric and stratospheric jets weak in future climate projections.
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Bodas-Salcedo et al. (2012) found that the Met-Office Unified Model had prob-

lems with the under-representation of mid-top and stratocumulus clouds on the

cold air side of cyclones, in the Southern Ocean. They found that errors concerning

these cloud types could be largely attributed to the boundary layer parameteri-

zations used. Upon this evaluation, Huang et al. (2014) found that the Weather

Research and Forecasting model (WRF) had many similar issues regarding the

under-representation of clouds and emphasize that this is likely a result of param-

eterization errors. Further, Fogt and Bromwich (2008) showed that these issues

also affect AMPS forecasts, expanding on the other studies by noting that AMPS

forecasts upper-level clouds accurately.

With the importance of both the Antarctic cryosphere and atmosphere to cli-

mate and sea level change, the discussed NWP deficiencies in the Antarctic are a

clear barrier to weather forecasting and climate projections. Thus, the development

of specialized non-hydrostatic models, along with the associated data-assimilation

and parameterization schemes, is a key component of future research to under-

standing Antarctica.

1.1.3 Forecasting Applications

Antarctic NWP is utilized to support activities including logistics for science and

tourism, which have grown rapidly during the past few decades. Currently, an

estimated 5000 scientists operate in and around the Antarctic continent, while

tourist visits to Antarctica grew from an estimated 6500 people per year in 1992

to around 35000 people per year in 2009 (International Association for Antarctic

Tour Operations, 2014). The cost of transportation to and from the region is

highly dependent on weather. For example, the typical cost for a New Zealand

to McMurdo flight to turn around at the point of safe return due to expected

poor landing conditions is $US100,000 (World Meteorological Organization, 2013).
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Furthermore, the aforementioned lack of observations and the relative isolation of

the Antarctic continent increases the reliance upon NWP forecasts and thus they

have become a key component of logistical and scientific operations in and around

the Antarctic continent.

The need for specialized, non-hydrostatic NWP models to accurately repre-

sent phenomena across all scales in the Antarctic is therefore paramount to both

forecasting and research, in an otherwise data-sparse region of the globe.

1.2 The Antarctic Mesoscale Prediction System

(AMPS)

Until October 2000, NWP capability was provided by global models such as the Na-

tional Center for Environmental Prediction’s (NCEP) Global Forecasting System

(GFS) and European Center for Medium Range Weather Forecasting’s (ECMWF)

Integrated Forecasting System (IFS). After October 2000, in response to the need

for higher resolution NWP capability in the Antarctic, the Antarctic Mesoscale

Prediction System (AMPS; Powers et al., 2012) was developed and implemented

by the National Center for Atmospheric Research (NCAR) in conjunction with

the Byrd Polar Research Center (BPRC). AMPS is a NWP model that is designed

to address many of the issues discussed in Section 1.1. AMPS, implements a

modified version of the polar-optimized Weather Research and Forecasting Model

(Polar WRF; Hines and Bromwich, 2008; Bromwich et al., 2009; Hines et al.,

2011; Bromwich et al., 2013b). As well as providing forecasting support for the

United States Antarctic Program, other international Antarctic scientific efforts

and Antarctic tourism, AMPS has been used for a variety of different research

studies of Antarctic weather and climate. These include studies of atmospheric
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moisture (Fogt and Bromwich, 2008), winds (Nigro et al., 2012; Seefeldt and Cas-

sano, 2012; Steinhoff et al., 2012), cyclones (Uotila et al., 2009), local climatologies

(Monaghan et al., 2005), and cloud and precipitation regimes (Schlosser et al.,

2008).

Such extensive use of AMPS in forecasting and research efforts require that

the model be evaluated for areas of poor performance. A recent evaluation of the

Polar WRF in the Antarctic by Bromwich et al. (2013b) used AWS sites across

the continent to produce an annual time series of surface biases. In addition,

the Amundsen Scott South Pole site and five other coastal sites were used to

evaluate the upper air performance at standard pressure levels. Bromwich et al.

(2013b) showed that seasonal variations in model skill exist. Bromwich et al.

(2013b) indicate that there are cold surface temperature biases during the summer

with warm surface temperature biases during the winter. Further Bromwich et al.

(2013b) showed that there are positive wind speed and pressure biases throughout

the year, with larger biases in the winter for wind speed, and in the summer

for pressure. These positive surface wind speed biases and an anomalously large

downward flux of sensible heat toward the surface produced the warm surface

bias in winter. In addition Bromwich et al. (2013b) concluded that model skill

is affected more by the analysis than the physical parameterizations or multi-

annual differences in the atmospheric circulation. Improving the current network

of observations and quality of the analyses was therefore a conclusion drawn for

future focus.

Other evaluations of polar NWP models such as Tastula and Vihma (2011),

Tastula et al. (2012), and Kumar et al. (2012) have used single sites to verify

model performance. Kumar et al. (2012), evaluated Polar WRF simulations over

the Maitri region of Antarctica. They showed contrasting results to Bromwich
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et al. (2013b) indicating negative surface wind speed biases, although pressure bi-

ases were similar to that of Bromwich et al. (2013b). Furthermore, Tastula and

Vihma (2011) and Tastula et al. (2012) examined the treatment of the atmospheric

boundary layer in Polar WRF over sea ice. They showed many results consistent

with Bromwich et al. (2013b) in regard to variables such as temperature and cloud

cover although there analysis of surface flux biases within the model was inconsis-

tent with Bromwich et al. (2013b).

These previous evaluations and their inconsistent conclusions highlight the

many issues with evaluating NWP models in the Antarctic. Low spacial coverage,

a lack of observations, few specialized observations (such as radiative fluxes) and

highly transient meteorological conditions make it difficult to identify consistent

errors with AMPS and Polar WRF.

1.3 The Concordiasi Project

It is clear that in addition to the issues posed by a lack of observations for oper-

ational NWP and forecasting, the dearth of in-situ observations also hinders the

ability to improve the model through direct evaluations. In particular an issue

that all the previous evaluations encountered was a distinct lack of spacial cover-

age for observations, specifically for upper air observations. Given this issue the

current study attempts to address the discussed problems by evaluating AMPS

using dropsonde data produced during the Concordiasi project. Concordiasi was

a multidisciplinary, joint France-US initiative designed to study the troposphere,

lower stratosphere and land surface of Antarctica. Surface measurements and ra-

diosonde launches from the Concordia, Dumont d’Urville, and Rothera sites were

carried out in the austral springs of 2008, 2009, and 2010. From September through

December of 2010, 13 driftsondes with instrument packages on tethered gondolas,

drifted on isopycnic surfaces within the stratospheric winter polar vortex (Rabier
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et al., 2013; Cohn et al., 2013). The driftsondes took in situ measurements of

stratospheric properties while also allowing the launch, on command, of around

640 dropsondes. Dropsonde launches were primarily designed to coincide with

passes of the Infrared Atmospheric Sounding Interferometer (IASI) with a sec-

ondary goal to provide observations in regions with critical gaps in observational

coverage. As a result there is a broad spacial coverage of observations in the data

set of dropsondes. Given the spacial coverage of observations Concordiasi dropson-

des provide an excellent spacial distribution of tropospheric profiles (Figure 1.1)

relative to current and previous Antarctic observations.
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Figure 1.1: A terrain map of Antarctica with October 2010 mean sea ice extent

shown in white and open water shown in blue. Antarctic radiosonde sites (as of

2010) in pink and Concordiasi dropsondes separated by the surface type over which

they dropped are shown. Surface types include continental high plateau (HP) in

cyan, continental low elevation (LE) in blue, sea ice or permanent ice shelves (IC)

in green, Partial Sea Ice Cover (PI) in brown, and Open Water (OW) in red.

Triangles represent profiles during the day and squares represent those at night.
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Chapter 2

Model and Observational Details

In this chapter we discuss the details of the models used in the study. Further, we

also discuss the observational errors of Concordiasi dropsondes and measures we

have taken to alleviate any problems arising from the errors we discuss.

2.1 AMPS, the Global Forecast System (GFS),

and ERA-Interim

We evaluate AMPS forecasts that were performed in real-time during the period

September through December of 2010. The forecasts were obtained through the

NCAR high performance storage system (Mesoscale & Microscale Meteorology Di-

vision, University Center for Atmospheric Research, 2014). During this period,

AMPS implemented a modified version of Polar WRF, which in itself is a modified

version of the Advanced Research WRF (WRF-ARW) Version 3.0.1. Modifica-

tions to improve the performance of WRF in the polar regions are made to the

parameterizations. The specific schemes used are documented in Table 2.1. The

discussed modifications are primarily to the Noah Land Surface Scheme to account

for the different properties of surfaces of snow and ice, and are discussed in Hines
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Parameterization Scheme

Longwave RRTM

Shortwave Goddard

Boundary Layer Mellor-Yamada-Janjic (Eta) TKE scheme

Surface Layer Monin-Obukhov (Janjic Eta) scheme

Land Surface Unified Noah LSM

Microphysics WSM-5 Class Scheme

Cumulus Kain-Fritsch

Sea Ice Custom fractional sea-ice implementation

Table 2.1: AMPS Parameterization Schemes during Concordiasi

and Bromwich (2008); Bromwich et al. (2009); Hines et al. (2011); Bromwich et al.

(2013b).

AMPS grid spacing included a 45-km outer grid encompassing Antarctica, the

southern ocean, New Zealand, and southern parts of South America, Africa and

Australia; a 15-km grid encompassing Antarctica and southerly parts of the South-

ern Ocean; and 4 smaller grids located over the Antarctic peninsula, the South Pole,

Ross Sea and Ross Island (Figure 2.1). Given the broad spacial distribution of Con-

cordiasi, the current evaluation focuses on the 45-km grid. The parameterization

schemes of these simulations are documented in Table 2.1.

The operational GFS is used for comparison to AMPS forecasts. We use the

real-time 0.5◦ × 0.5◦ configuration, identical to those used as the initial and bound-

ary conditions for AMPS. This allows a direct comparison to the AMPS initial

conditions, with the aim of deducing the source of any analysis errors. Informa-

tion regarding the GFS setup can be found at NOAA, Environmental Modelling

Center (2014).
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Figure 2.1: AMPS grid structure during September-December 2010. Source:

Mesoscale & Microscale Meteorology Division, University Center for Atmospheric

Research (2014).
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Further, we also use ECMWF’s ERA Interim reanalysis for comparison to

AMPS. We use the 0.5◦ × 0.5◦ configuration similar to the GFS. Information

regarding ERA-Interim can be found at Dee et al. (2011).

2.2 Dropsonde data

The dropsondes, created by the Earth Observing Laboratory at NCAR are minia-

ture in-situ sounding technology (Cohn et al., 2013; National Center for Atmo-

spheric Research, Earth Observing Laboratory, 2011). These use modified Vaisalla

RS92 dropsonde sensors and therefore have similar performance characteristics.

The measurement of temperature, pressure and winds have no systematic mea-

surement biases reported in the literature and the Vaisalla reported errors are

widely accepted. However, biases in measurements of humidity in radiosondes

have been documented for some time (Guichard et al., 2000). Vömel et al. (2007)

first documented a dry bias in the RS92 radiosonde, caused when direct solar radi-

ation dries the humidity sensor. To counter this bias in the Concordiasi data set,

the NCAR radiation bias correction (NRBC; Wang et al., 2013b) is implemented

on the Concordiasi humidity data. Other quality control issues with the soundings

were treated by EOL (National Center for Atmospheric Research, Earth Observing

Laboratory, 2011). These corrections include the removal of anomalous data points

due to failed deployment of the sondes, false measurements after dropsondes reach

the ground, and equilibration of the sensors after release from the heated driftsonde

gondola. Despite these corrections, humidity errors exist in the observations. The

time lag of the sensors is one of these errors which is a significant problem for

the low humidities found in polar regions, especially at higher elevations. While a

correction scheme is available for time lag errors in RS92 radiosondes (Miloshevich

et al., 2009), there is no research that extends such schemes to dropsondes and

therefore no correction has been applied. The extreme cold and dry conditions
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Variable Total Uncertainty Response Time

Temperature 0.5C <1s between 1000- and 100-hPa

Humidity 5% <20s at -40C, lower at warmer

temperatures

Pressure 1hPa Not provided.

Table 2.2: Vaisalla RS92 sensor accuracy (Vaisalla, 2013).

in Antarctica, especially in the upper atmosphere at pressure lower than 500 hPa

limit the accuracy of humidity measurements (Bromwich et al., 2005; King and

Turner, 2007). Hence these issues with humidity observations above 500 hPa are

taken into account in discussions of statistics in latter sections.

There is little information available that documents the accuracy of the MIST

sonde sensors. However since the sensors are primarily those from the RS92 son-

des we document the Vaisalla reported errors in the Table 2.2. In the following

discussion we take into account the uncertainty given here when discussing the

significance of statistics
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Chapter 3

Methodology

3.1 Interpolation Techniques

To produce comparable atmospheric profiles through which to evaluate statistics, a

number of interpolations are used in both time and space (Table 3.1). This study

uses a simple linear interpolation in time between the 2 surrounding 3 hourly

model output times to translate the model predictions to the observation time.

In horizontal space, a bilinear interpolation to the observation location from the

surrounding four model grid point is utilized, This has been used in previous

model evaluations (Bromwich et al., 2013b), and in the WRF post-processing

system. In the vertical, NWP model evaluations often interpolate to pressure

levels. However, due to high and varying orography in the Antarctic region (Figure

1.1), pressure levels do not represent constant environments such as the boundary

layer where NWP model errors are often largest. Therefore, this study utilized

vertical interpolations to the AMPS eta level given by:

η =
p− pt
ps − pt

(3.1)

where p is the pressure at a given location, pt is the pressure at model top (10 hPa)

and ps is the surface pressure. Analogous to the sigma coordinate, η is terrain

following, thus interpolations of the observation to this level, produce constant
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Dimension Scheme From To

Horizontal

Space

Bilinear Surrounding four

model grid points

Observation hori-

zontal location

Vertical

Space

Linear Observation

vertical location

Model Level

Time Linear 3 hourly model

output times

Observation time

Table 3.1: Interpolation Schemes used in the evaluation of AMPS.

data sets across constant vertical coordinates, and allow a clearer evaluation of the

boundary layer in particular.

3.2 Statistics

Forecast evaluation typically requires a number of characteristics of the model be

examined. These characteristics include reliability, typical error, association, vari-

ability, and skill (Jolliffe and Stephenson, 2012). To study these characteristics, we

use a number of statistical moments of temperature, moisture and winds. Specif-

ically, relative humidity and dew point are the focus for moisture variables, while

speed and direction are the focus for winds. Reliability, defined as whether the

model represents the observed atmospheric characteristics, or something else, is

represented by bias:

bias = Am − Ao (3.2)

where A is a given variable (e.g. temperature) with the model variable denoted by

the subscript m and the observational variable denoted by the subscript o. Bias

therefore represents over or under-forecasting through positive and negative biases

respectively. Paired, 2-sided T-tests at the 95% confidence level are performed in
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order to note the statistical significance of mean biases in Sections 6.1, 6.2, and

6.3 e.g. the difference from a mean bias of zero (Wilks, 2011).

Error, defined as the accuracy of the model, is represented in most studies

(Bromwich et al., 2013b, 2005) by root mean square deviation or error (RMSD or

RMSE):

RMSD =

√∑
(Am − Ao)2

N
(3.3)

However, RMSD accounts for both the bias and the error, thus the centered root

mean square deviation (CRMSD: Taylor, 2001) is used in this study:

CRMSD =

√∑
((Am − Ām)− (Ao − Āo))2

N
(3.4)

This accounts for the part of the error that does not include the bias since RMSD

can be separated into CRMSD and bias. Variability is represented by the standard

deviation of the data set:

s =

√∑
(A− Ā)2

N − 1
(3.5)

where N is the number of observations. Differences between the observed s and

forecast s (standard deviation bias) are calculated in order to observe whether the

model captures the correct range of the observed variable. The standard deviation

bias is also used to measure the degree to which the model is correctly capturing

atmospheric cycles, such as boundary layer temperature over a 24 hour period.

Association, the degree to which the forecasts match the truth, is in many studies

represented by correlation coefficient:

ρ =

∑
(Am − Ām)(Ao − Āo)√∑

(Am − Ām)2
∑

(Ao − Āo)2
. (3.6)

However it is shown by McCuen et al. (2006) that ρ is simply the square root of

the Mean Square Error Skill Score (MSESS: Jolliffe and Stephenson, 2012):

MSESS = 1−
∑

(Am − Ao)
2∑

(Āo − Ao)2
∝ ρ2 (3.7)
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which also represents skill, the degree to which the forecast improves upon some

reference forecast, in this case climatology. MSESS directly relates the model fore-

cast to a forecast of climatology while also quantifying association. Since MSESS

is related to the square of the bias by:

1−MSESS ∝ (Am − Ao)
2, (3.8)

a MSESS of 0.75 represents an absolute error that is 50 % of the magnitude of the

bias from a forecast a forecast of climatology. Thus a skill score of 0.75 or greater

represents a very good skill score. Using this relation a MSESS of 0.44 gives an

absolute error from AMPS that is 75 % of the bias obtained from climatology.

Therefore 0.44 represents a mediocre skill score. Anything less represents an ab-

solute error with little improvement upon the climatology and is therefore a poor

skill score. By design a score of less than 0 means the prediction is worse than

climatology.

These scores combine to comprehensively represent model performance. In or-

der to quantify the uncertainty in these statistics we use 95 % confidence intervals

of 5000 re-sampled (with replacement) subsets of the data (Wilks, 2011). These

confidence intervals provide an accurate means of noting the statistical signifi-

cance of all statistics, especially those statistics such as MSESS that only have one

value for the entire subset and for which it is therefore not possible to calculate

traditional confidence intervals. Re-sampled confidence intervals also provide a

non-parametric method through which to test the significance of statistics. How-

ever in this case results of re-sampling are comparable to the parametric T-test

used to test the statistical significance of biases in Sections 6.1, 6.2, and 6.3 be-

cause in most cases the T distribution fits the biases and so a parametric test is

appropriate.
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3.3 Lead time

To produce a complete time series for the duration of the model, statistics are

presented for 10 windows of 12 hours each, 6 hours either side of the presented

lead time. These windows vary from 6 to 108 hours (4.5 days; the last 12 hour

window possible given the 120 hour forecast of the model). In addition there

is a 0 hour window designed to represent the initial conditions. In this window

interpolations in time are made between AMPS 0 and 3 hour forecasts. As such,

the 0 hour window does not include all dropsonde profiles and is around a quarter

of the size of the other windows, since the model was only initialized every 12

hours as shown in Table (3.2). There are 3 windows covering the first 18 hours of

the model integration in order to capture the rapid progression of changes in the

atmospheric state after the model is initialized and diagnose any biases that may

be a result of poorly specified initial conditions.

3.4 Subsets based on Antarctic Environments

During the following analysis, it was noted that low-level model bias is strongly

related to the surface. King and Turner (2007) discuss how the atmospheric bound-

ary layer over the Antarctic continent can be separated into three regimes, the high

continental interior, the steep coastal katabatic zones, and over the ice shelves.

Thus, in order to separate biases by different boundary layer environment we sub-

set the profiles by day and night, as well as by the surface types over which the

dropsonde fell. These are (1) over the elevated continental interior and high plateau

(HP), (2) over the steep coastal areas and lower elevations surrounding the interior

(LE), (3) over the permanent ice shelves and sea ice (IC), (4) over an area of partial

sea ice cover (PI), and (5) over open water (OW).
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The HP subset is defined as any vertical profiles with a surface pressure less

than or equal to 750 hPa, over the continent. This definition is designed to include

all profiles over the high plateau region of Antarctica but exclude any profiles over

regions with strong orography (e.g. the coasts and mountains) since these rep-

resent a different boundary layer environment. The LE subset is defined as any

profile with a surface pressure greater than 750 hPa, over the continent. This sub-

set is designed to provide some insight into AMPS performance in the katabatic

zone, although in reality, due to the localized nature of strong katabatic flows, it

encompasses a mixture of environments found at the lower elevations over Antarc-

tica. The IC subset is defined as any profile over the permanent ice shelves, or

over a cell with at least 90% sea ice cover. Sea ice concentration is from the 25-km

grid spacing National Snow and Ice Data Center (NSIDC) Climate Data Record

of Passive Microwave Sea Ice Concentration, available at National Snow and Ice

Data Center (2014). The PI subset is defined as profiles over sea ice with a con-

centration between 10 and 90 %. The OW subset is defined as any profile over a

cell with sea ice concentration of less than 10%, which includes those that fell over

the open ocean as well as polynyas. Due to very small sample sizes in the PI and

OW subset no statistics are presented here since no statistical significance can be

attributed.

Each subset sample size is shown in Table 3.2 while the location and subset of

each dropsonde is shown in Figure 1.1. In the Chapter 4 we discuss the atmospheric

characteristics of these subsets in further detail.
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Table 3.2: Sample sizes for the various subsets. Forecast subset sizes are those

without parentheses and 0 hour subset sizes are in parentheses.

Subset Day Night Total

High Plateau (HP) 152 (49) 47 (26) 199 (75)

Low Elevation (LE) 107 (24) 40 (10) 147 (34)

Total Ice cover (IC) 123 (28) 95 (18) 218 (46)

Partial Sea Ice cover (PI) 18 (6) 7 (3) 25 (9)

Open Water (OW) 15 (8) 7 (1) 22 (9)

Total 424 (115) 218 (58) 611 (173)
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Chapter 4

Observed Atmospheric Characteristics in the

Concordiasi Data Set

This section is designed to provide an overview of the benefits Concordiasi provides

in observing atmospheric features across the Antarctic region. Here we discuss the

observed characteristics in the Concordiasi data set with a focus on the key low-

level features. Features are discussed with respect to the subsets as defined in

Section 3.4. We also define some key parameters of the low-level features that will

be used in later sections.

4.1 Observed Characteristics

As defined in King and Turner (2007) the High Plateau is characterized by intense

radiative cooling at the surface, with accompanying strongly stratified low levels

that lead to strong inversions (e.g. Figures 4.1a and 4.1b). In this thesis we define

two parameters to characterize inversions; inversion strength and inversion depth.

Inversion strength (IS):

IS = Tm − Tb, (4.1)
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is the difference between temperature (or dew point) at the base of the inversion

(Tb) and first temperature (or dew point) maximum aloft (Tm). Inversion depth

(ID), defined as:

ID =
RT̄

g
ln
(PTm

Pb

)
, (4.2)

where R is the ideal gas constant for dry air, T̄ is the mean temperature of the

layer, g is gravitational acceleration, Pb is pressure at the inversion base, and

PTm at the first temperature (or dew point) maximum aloft. These definitions

follow those used in Vihma et al. (2012), and Tastula et al. (2012). In the HP

subset a majority of temperature inversions are surface based (SBIs), consistent

with the forcing of strong radiative cooling at the surface. Inversions are on average

stronger during the night with mean IS of 14.3 K during the day and 17.8 K during

the night (Table 4.1). Inversions are approximately 500 m deep with inversions

approximately 90 m deeper during night (Table 4.1). Dew point inversions are

comparable to temperature inversions in both IS and ID.

Despite mild slopes over the High plateau, katabatic effects are still important

for wind due to the intense surface cooling, and resulting low buoyancy of surface

air parcels relative to those not in contact with the surface. This leads to a strong

low-level wind maximum (LLWM) just above the surface (e.g. Figures 4.2a and

4.2b). In this thesis we analyze two variables associated with the LLWMs. The

first is the maximum wind speed of the LLWM (Vm). Vm must be 2 ms−1 greater

than the minimum winds immediately above and below the maximum in order for

the LLWM to exist. This condition is based on the formulations used in Andreas

et al. (2000) and Tastula et al. (2012) for a LLWM. The second is the height of

this LLWM maximum, defined as:

zVm =
RT̄

g
ln
(PVm

Pb

)
. (4.3)

Table 4.2 shows that the mean LLWM maximum wind speed is approximately

17 ms−1, the mean height of this wind maximum is approximately 192 m, and
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Figure 4.1: Vertical profiles of temperature and dew point for (a) HP and day, (b)

HP and night, (c) LE and day, (d) LE and night, (e) IC and day, and (f) IC and

night. For HP and LE subsets (i.e. a,b,c, and d) only the surface and first 15 model

levels are shown to focus on the SBI. For the IC subsets, this is extended to focus

on the mid-levels where there are co-located warm and dry biases. Bold black lines

represent Concordiasi mean profiles. Colored lines represent corresponding AMPS

forecast mean profiles for given lead times.
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Table 4.1: Mean temperature inversion strength and depth, number of inversions

present in the subset, and number of inversions that are surface based. Character-

istics are presented for day first and then night (e.g. day/night).

Subset Strength (K) Depth (m) Inversions SBIs

High Plateau (HP) 14.3/17.8 440.7/528.0 149/44 129/44

Low Elevation (LE) 7.2/11.1 419.0/411.3 93/31 71/26

Total Ice Cover (IC) 2.9/6.0 427.1/229.1 88/79 45/43

LLWMs are observed in around 86 % of the profiles. There is little variation in

LLWMs between day or night. The SBIs and LLWMs are the main features of the

HP environment, and there is a focus on the accuracy of AMPS forecasts for these

in following chapters.

The LE subset is characterized by the same features as those that characterize

the HP subset but inversions are weaker (Figures 4.1c and 4.1d), approximately

8 K, (Table 4.1), and LLWMs are weaker and higher (Figures 4.2c and 4.2d),

approximately 15.5 ms−1 and 350 m respectively (Table 4.2). Again observed dew

point inversions are comparable to temperature inversions.

In the IC subset, weaker downward surface fluxes and flat terrain result in weak

(if any) stratification (Figures 4.1e and 4.1f) leading to weak SBIs, of approxi-

mately 4 K (Table 4.1), and weaker and higher LLWMs (Figures 4.2e and 4.2f), of

approximately 14.5 ms−1 and 500 m respectively (Table 4.2). This environment is

comparable to the nocturnal boundary layer at lower latitudes. However, a reduced

diurnal cycle results in a steady state rather than the continual diurnal evolution

seen at lower latitudes (King and Turner, 2007). Further, LLWMs here are not

always forced by the katabatic flow since there is no slope. Close to the coast there

is some katabatic effect from winds flowing off the continent but often LLWMs are
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Figure 4.2: As in Figure 4.1 but for low-level wind speed.
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Table 4.2: Mean LLWM maximum wind speed and height, and number of LLWMs

present in the subset. Characteristics are presented for day first and then night

(e.g. day/night).

Subset Maximum Wind Speed (ms−1) Height (m) LLJs

High Plateau (HP) 16.4/17.1 192.2/191.9 132/39

Low Elevation (LE) 15.8/15.3 355.7/317.6 80/32

Total Ice Cover (IC) 14.1/15.0 462.8/532.1 84/58

forced by synoptic features such as low pressure systems. Thus LLWMs there are

weaker LLWMs in the IC subset relative to the HP and LE subset because LLWMs

are less persistent. This is evident in Table 4.2 where the number of LLWMs makes

up a smaller fraction of the total subset size than in the HP and LE subsets.

4.2 Discussion

Since the dropsonde profiles provide one of the first data sets with a broad spacial

coverage of in-situ measurements across Antarctica, Concordiasi allows a detailed

in-situ look at a number of features that are poorly understood in the literature.

One of these features is the atmospheric inversion, in particular over the sea ice in

Antarctica. Inversion characteristics are consistent with the observations in Pavel-

sky et al. (2011) who showed Antarctic inversion characteristic over sea ice using

the Atmospheric Infrared Sounder (AIRS). Andreas et al. (2000) also documented

the inversion characteristics over sea ice at Ice Station Weddell in Fall and Winter

of 1992. They showed that 96% of profiles had inversions while 44% of profiles

had SBIs. We show here that 93% of profiles exhibit inversions while 53% of these

inversions are surface based, a result consistent with Andreas et al. (2000).

30



Further, while inversions over the continental interior have been studied in

depth at certain sites such as at the Amundsen Scott South Pole Station, or at the

Dome C Concordia Research Station (Hudson and Brandt, 2005; Pietroni et al.,

2014), there is little research on inversions across the entire continental interior.

Here we show that inversions are very strong in the HP subset and that inversions

exist in nearly all profiles with a majority of these inversions surface based (100%

of inversions are surface based during night). These results are consistent with

Hudson and Brandt (2005) and Pietroni et al. (2014) indicating that the results

at these sites are representative of the HP region.

In Chapter 4.2 we saw that winds above the surface accelerate and exhibit a

LLWM on average. This LLWM is thought to represent the katabatic wind due to

its structure and the overall synoptic scale flow in Antarctica (King and Turner,

2007). The katabatic wind is primarily a function of the surface heat fluxes (e.g.

cooling of the surface layer by the surface), the slope of that surface, and the surface

drag (King and Turner, 2007). While the LE subset was tentatively designed to

account for the strong coastal katabatic flows, it actually exhibits a weaker LLWM

than in the HP subset. A weaker LLWM occurs, since in reality, the katabatic flows

are localized in coastal regions and the subset accounts for all profiles over lower

elevations. Thus it is thought here that the continental winds captured by the

Concordiasi data set are not representative of the strong katabatic flows in steep

coastal regions but more representative of the overall circulation over Antarctica.

Thus, since the LE subset is not representative of the steep and varying terrain, the

slope and frictional effects have little effect on the katabatic wind and the cooling

of air at the surface is the primary driver of katabatic flows. Therefore winds in

the LE subset that are cooled less would exhibit weaker katabatic flows than in the

HP subset. There are few, if any, studies that have studied the katabatic flow in

the interior since most studies of the katabatic winds have focused on the extreme
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coastal katabatic flows that are not captured here. Thus this study presents one of

the first large scale observational views of the katabatic flow over the high plateau.

While this study was not designed to focus on the observed atmospheric char-

acteristics in the Antarctic region, this simple analysis highlights the benefits that

Concordiasi provides in documenting the characteristics of low-level atmospheric

features over the Antarctic that have few detailed observations and are poorly

understood relative to features in the mid-latitudes.
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Chapter 5

AMPS Forecast Performance

In this section we present a general overview of AMPS forecast performance through

the statistics discussed in Section 3.2 with a focus on skill represented by MSESS.

These sections represent the various surface type subsets, as discussed in Section

3.4. Only the statistics are shown here, with statistical significance provided in

more detailed analyses in later sections.

5.1 Continental High Plateau (HP)

Figures 5.1a, 5.1d, 5.1g, and 5.1j show the mean bias, standard deviation bias,

CRMSD, and MSESS, respectively, for temperature forecasts in the HP subset.

Skill, represented by MSESS is above 0.75 during the early lead times (6 and 12

hours) with the exception of two local minima; at the 5th model level and at the

surface. Relatively low skill (MSESS of approximately 0.45) at the 5th model

level coincides with a maxima in negative (cold) biases, and a positive maxima in

standard deviation biases. Therefore, this minima in skill is a result of locally cold

temperatures and relative high variability. The surface relative minima in skill

(MSESS of approximately 0.55) coincides with positive (warm) biases, negative

standard deviation biases and high errors (CRMSD of over 6 K). Thus, this minima

in skill is likely a result of warm temperatures, low relative variability and relative
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large error in the forecasts. Aloft (above the 10th model level) skill is high (MSESS

of greater than 0.75) with small mean biases, standard deviation biases and errors.

Throughout the first 48 hours of the model integration there are large changes

to all statistics for temperature. The cold mean bias and high standard deviation

bias at the 5th model level in the early lead times are replaced with small biases by

the 2 day lead time. This raises the skill at the 5th model level, such that MSESS

is 0.7 at the 5th model level by the 2 day lead time despite an overall 0.1 decrease

in MSESS throughout the column. By the later lead times (3 and 4 days) MSESS

decreases by 0.1-0.2 such that at the surface skill is poor (although skill remains

good aloft), CRMSDs are approximately 8 K and mean bias is 5.5 K.

Dew point MSESS values show that skill is progressively lower with lead time,

and is highest in the mid-levels (Figure 5.1k). Above the 20th model level, skill

decreases such that above the 22nd model level MSESS is below 0. However, given

that there is high uncertainty in observation accuracy above 500 hPa it is not

possible to attribute this low skill to AMPS. Skill is also poor at the surface with

MSESS at all lead times less than 0.44 and 2, 3, and 4 day lead times less than 0.

This low skill coincides with positive (moist) mean bias (Figure 5.1b) of 8-11 K,

negative standard deviation biases of 2 K (Figure 5.1e), and high errors of 7-9 K

(Figure 5.1h). This implies that low skill is a result of relative moist dew points,

low variability, and large errors. Skill is relatively highest between the 5th and

20th model levels where 6 hour MSESS is as high as 0.7. However, there is a

decrease in skill after 12 hours, and by 4 days MSESS is approximately, or less

than 0 throughout the column. This decrease in skill coincides with increasing

errors.

AMPS skill at forecasting wind speed is average to poor (Figure 5.1l). At

6 hours MSESS is above 0.6, except below the 5th model level where MSESS

decreases to around 0.2 at the surface. Low skill below the 5th model level coincides
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Figure 5.1: Statistics of (a,b,c) mean bias, (d,e,f) standard deviation bias, (g,h,i)

CRMSD, (j,k,l) MSESS for AMPS (a,d,g,j) temperature, (b,e,h,k) dew point, and

(c,f,i,l,o) wind speed forecasts. Statistics represent the HP subset for lead times

from 6 hours to 4 days.
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with negative (slow) mean biases up to 3 ms−1 implying that the low skill is

primarily due to slower predicted winds in AMPS (Figure 5.1c). Above the 5th

model level, while skill is good to average at early lead times, after 2 days MSESS

drops below 0.44 and skill is poor with large errors of greater than 5 ms−1 (Figure

5.1i). Standard deviation biases are primarily negative, between 1.5 and 0.5 ms−1.

There are large CRMSDs of up to 7 ms−1 at later lead times between the 23rd and

27th model levels. This level coincides with the maximum winds in the polar jet

stream. Thus at later lead times high errors are simply an artifact of the incorrect

position of the polar jet. Between 1 and 2 days there are large increases in errors.

Therefore the position of the polar jet in AMPS is displaced from the observations

by 2 days in the model integration.

5.2 Continental Low Elevations (LE)

Skill for forecasts of AMPS temperature is good at early lead times (6 and 12

hours), with MSESS above 0.75 throughout the column except at the surface (Fig-

ure 5.2j). Similar to the HP subset there are local minima in MSESS at the surface

and at the 6th model level, although the magnitude of the local minima at the 6th

model level is smaller, with MSESS above 0.75. The local minima at the surface

coincides with warm mean bias (Figure 5.2a), low standard deviation bias (Figure

5.2d), and high error (Figure 5.2g). However, the magnitude of these are smaller

than in the HP subset which possibly accounts for improved skill in the LE subset.

At the 6th model level cold mean bias and relatively higher errors coincide with

the local minimum in skill. Throughout lead time there is an increase in mean

bias toward warm biases, and an increase in errors which coincide with a decrease

in skill. There are again large changes during the early lead times.

The skill for forecasts of dew point below the 22nd model level is average for

most lead times except 4 days (Figure 5.2k). Mean biases are small between the
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Figure 5.2: As in Figure 5.1 but for the LE subset.

37



5th and 15th model level (Figure 5.2b). Below the 5th model level there are

large standard deviation biases and errors of approximately -3.5 K and 6-8 K

respectively (Figures 5.2e and 5.2h respectively). Skill drops from approximately

0.7 at 6 hours to approximately 0.4 at the 4 day lead time. This coincides with a

substantial increase in the errors with lead time (at some levels, errors double).

Similar to the HP subset, forecasts of wind speed have the highest skill above

the 5th model level (Figure 5.2l). At the surface, during the 6 and 12 hour lead

times MSESS is approximately 0.45 indicating marginal skill. This low skill coin-

cides with a negative mean bias of approximately 1.5 ms−1 (Figure 5.2c), a small

standard deviation bias of 0.5-1 ms−1 (Figure 5.2f), and low errors (Figure 5.2i).

Aloft there are high errors around the 25th model level, possibly associated with

the jet-stream maximum, since it coincides with mean pressures of approximately

280 hPa. Further there is a 1 ms−1 mean wind speed bias around the 7th model

level. Through the model integration there is a 0.2-0.7 decrease in MSESS, and a

1-3 ms−1 decrease in errors such that by the 4 day lead time skill is low and errors

are high.

5.3 Permanent Ice Shelves and Sea Ice (IC)

AMPS forecast skill for temperature in the IC subset is comparable to skill over

the continent (Figure 5.3j). MSESS values are greater than 0.75 above the 5th

model level at the 6 hour lead time. At the surface MSESS is 0.6 indicating

mediocre skill. Relative low skill at the surface coincides with a mean cold bias

of 2 K (Figure 5.3a) and relative large CRMSDs of 4 K (Figure 5.3g). Standard

deviation biases are small, approximately 0.5 K (Figure 5.3d). This indicates that

low surface skill is due to cold biases and high errors. MSESS decreases through

the model integration by only 0.1 at the surface. However at the 25th model level,

MSESS decreases through the model integration by 0.4 to around 0.45 at the 4
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day lead time. This does not coincide with any notable biases or relative large

errors thus it is most likely due to a decrease in the correlation between the model

and observations. Mean biases at the surface decrease to 0 K by the 4 day lead

time. However this warming of temperature with lead time leads to a warm bias

of nearly 2 K at the 13th model level.

Dew point forecast skill is good only below the 13th model level at the 6 hour

lead time where MSESS is approximately 0.75 (Figure 5.3j). Above here MSESS

decreases to approximately 0.45 at the 20th model level, where there are also

positive biases of 3 K (Figure 5.3b), low standard deviation biases of 3 K (Figure

5.3e), and high CRMSDs of 6 K (Figure 5.3h). Above the 25th model level (where

the observations are not reliable) skill is low and bias is large. Through the model

integration, MSESS decreases by 0.2 below the 10th model level such that skill is

mediocre to poor by the 4 day lead time. Above the 10th model level skill is poor,

or worse than climatology by the 4 day lead time. By the 4 day lead time there is

also a decrease in variability with a standard deviation bias of -1 K after 4 days.

AMPS forecast skill for wind speeds increases with height (Figure 5.3l). At the

surface, there is a relative low in MSESS of 0.5 at the 6 hour lead time. MSESS

increases to 0.9 above the 25th model level. Low skill at the surface coincides with

slow mean bias and low standard deviation bias, both of 1 ms−1 (Figures 5.3c and

5.3f respectively). After 1 day there are large decreases in skill and increases in

errors that lead to MSESS of less than 0.2 and errors of 4-10 ms−1 at the 4 day

lead time. Aloft, above the 25th model there is large positive mean bias, standard

deviation bias and errors at the 4 day lead time.
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Figure 5.3: As in Figure 5.1 but for the IC subset.
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Chapter 6

In Depth Analysis of AMPS Biases

In this Chapter we discuss the biases by their various subsets, as discussed in

Section 3.4. Here, statistically significant biases are referred to as significant and

all biases presented are mean biases but will be referred to as biases for conciseness.

6.1 Continental High Plateau (HP)

Figures 6.1a and 6.1b show the temperature biases for the HP subset for day

and night respectively. There is a similar pattern of biases in both (as in Figure

5.1a), although the magnitudes vary between day and night. During day, before

12 hours there are significant positive (warm) biases of 1-3 K at the surface and

1st model level. At these lead times, between the 3rd and 8th model levels there

are significant negative (cold) biases of 2-4 K. The low-level warm biases become

stronger and extend through a deeper layer with lead time such that by the 84

hour lead time there are warm biases that extend through the 6th model level

reaching a maximum of 6 K. Aloft, between the 14th and 23rd model levels, there

are significant cold biases of 0.5-2 K. At lead times of 36 hours or earlier, these

small cold biases connect with the larger cold biases at early lead times. During

night, the pattern of biases are the same, except that low-level biases are cooler

and biases aloft are weaker. This pattern manifests itself with stronger cold biases
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Figure 6.1: Biases for the HP subset for (a) temperature and day, (b) temperature

and night, (c) relative humidity and day, (d) relative humidity and night, (e) wind

speed and day, and (f) wind speed and night. Statistically significant biases are

hatched.
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and weaker warm biases in the low levels. As a result, warm biases are no larger

than 4 K and are only significant between the surface and 5th model level, at lead

times between 36 and 96 hours. Furthermore, low-level cold biases at early lead

times are larger than during the day; 3-5 K. Aloft, biases are more sporadically

significant and weaker; 0.5-1 K.

Relative humidity biases (Figures 6.1c and 6.1d), are always positive (e.g. the

model is too moist). For both day and night, there are larger biases of 20-30 % in

the low-levels (between the surface and 3rd model level). As per the discussion in

Section 2.2, it is difficult to decipher whether the biases aloft (beyond 500 hPa) are

a result of an observational bias or model bias, thus relative humidity biases at these

levels have been whited out in the figures. The only difference in relative humidity

biases between day and night is the difference in the magnitude of the biases

between the 5th and 20th model levels. During day relative humidity biases are in

the range 8-15 % but during the night they are in the range 3-10 %. Furthermore

during night, many biases are not significant.

Relating these biases to the observed conditions, Figures 4.1a and 4.1b show the

mean observed and AMPS forecast low-level vertical profiles of temperature and

dew point for day and night respectively. These profiles indicate that at early lead

times the couplet of warm and cold biases in the low-levels is due to warm surface

temperatures, with weak lapse rates in the SBI and cold temperatures atop the SBI.

The temperatures in the SBI then increase with lead time to produce warm biases

throughout the SBI. Weaker warm biases during the night are due to improved

representation of the surface temperatures in AMPS. Above the SBI there are

small cold temperatures, as shown by the biases, and AMPS temperatures slowly

change with lead time to be more similar to those of the dropsonde observations.
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High dew points throughout the column are consistent with high relative hu-

midity biases. Similar to the temperature SBI, the dew point SBI is poorly rep-

resented in AMPS with high surface dew points and weak SBI lapse rates. Also

similar to temperature, there is a distinct increase in the moisture with lead time.

Relative humidity biases do not increase with lead time since temperature and dew

point biases increase in parallel. Above the SBI dew points are all high. Like with

temperature, representation of the dew point SBI is improved at night, with lower

surface dew points and steeper SBI lapse rates than during day.

There are significant negative (slow) wind speed biases of 3-4 ms−1 at the

surface and first 3 model levels during both day and night (Figures 6.1e and 6.1f).

The only other significant pattern in wind speed biases during day is the 0.5-

1.5 ms−1 biases between the 6 and 48 hour lead times above the 10th model levels.

During night, there are positive (fast) biases at lead times before 60 hours above

the 25th model level.

Observed and AMPS forecast wind speed profiles show that the significant

slow biases are due to an overly large decrease in wind speed with height below

the katabatic maximum (Figure 4.2a and 4.2b). AMPS forecasts of the katabatic

maximum are too slow by around 1 ms−1 during both day and night. Above

this, AMPS forecast wind speeds decrease exponentially with height despite the

observed structure of wind speeds having a more complex decrease with height.

This results in the weak slow biases shown in Figures 6.1e and 6.1f.

6.2 Continental Low Elevations (LE)

Temperature biases in the LE subset follow a similar structure to those over the

HP (Figures 6.2a and 6.2b). Surface biases are positive through all lead times

although they are much weaker (relative to the HP subset), 0.5-4 K. During day

surface biases are significant at the 6 hour lead time and after, but during night
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Figure 6.2: As in Figure 6.1, except for the LE subset.
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they are only significant at the 72 hour lead time and after. These warm biases

also increase in height with lead time more than in the HP subset. During day

significant warm biases extend through the 15th model level by the 96 hour lead

time, but during night the significant warm biases only reach the 7th model level.

At early lead times there are again cold biases between the 3rd and 8th model

levels, which are most prominent during the 0 hour lead time. Aloft, between the

15th and 25th model levels there are again significant cold biases of 0.5-1.5 K (at

most lead times).

Relative humidity biases during day have a tri-pole pattern with significant

moist biases of 10-20 % at the surface through 4th model level, small dry or no

biases from the 5th model level through the 15th model level, and some moist

biases of up to 12%, above the 15th model level (Figure 6.2c). During night,

biases are moist through all levels and lead times (Figure 6.2d). At the surface

and first 5 model levels biases are significant, from 15-25 %. From the 6th model

level through the 18th model level biases vary from 1-10 % and are only significant

during the 6, 12 and 84 hour lead times. Above these levels biases are moist, up

to 10%.

Similar to the HP subset, during both day and night, AMPS forecasts a weak

lapse rate and high surface temperatures in the mean temperature SBI relative

to that observed (Figures 4.1c and 4.1d). This results in the similar structure of

temperature biases between the HP and LE subsets. However, since the observed

and forecast temperature SBIs are weaker in the LE subset, temperature biases

are smaller in magnitude. Temperatures in the SBI exhibit similar warming with

lead time as in the HP subset, resulting in the progression of temperature biases

with lead time seen.

Dew point biases vary between day and night. During day, the observed SBI is

not forecast in AMPS, with isothermal profiles at early lead times progressing to
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profiles with negative lapse rates at later lead times (Figure 4.1c). This resulted in

the moist surface relative humidity biases and dry relative humidity biases atop the

SBI. Above the SBI dew points have small or no bias. During night, the observed

dew point SBI is forecast but it is weak (Figure 4.1d). Dew points are too high

during night throughout the profile with the smallest biases around a mean pressure

of 750 hPa. As with all temperature and dew points already discussed there is an

increase in the dew point with lead time.

Wind speed biases are negative (slow) at the surface and first 3 model levels

during both day and night (Figures 6.2e and 6.2f). These biases are significant

for only the surface, 1st model level, and some lead times at the 2nd model level

during the day, and at the 1st model level and in some lead times at the 2nd and

3rd model levels during night. Around the 6th and 7th model levels wind speed

biases are positive (fast) although they are only significant at the 7th model level

and at other levels for some lead times during the day. Another significant pattern

is the slow wind speed biases aloft, between the 20th and 30th model levels during

the 6, 12, 24, 36, and 48 hour lead times during day. During night, there are some

significant biases but there are no clear patterns.

Figures 4.2c and 4.2d show that the slow surface wind speed biases during both

day and night are due to a larger decrease in the winds below the LLWM. In the

LLWM biases are different between day and night. During day the observed winds

are slower than the forecasts winds during most lead times. During night there

is a much larger observed LLWM and forecast wind speeds are slower than the

observed as a result.
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6.3 Permanent Ice Shelves and Total Sea Ice Cover

(IC)

In the IC subset during day, temperature biases are cold during the first 12 hours

below the 8th model level (Figure 6.3a). These cold biases are significant for both

0 and 6 hour lead times and between the 4th and 7th model levels at the 12 hour

lead time. After the 24 hour lead time there is an area of significant warm biases

centered on the 13th model level. These warm biases are largest around the 84

hour lead time with biases of around 1.5 K. After 72 hours these biases extend to

the surface but are not significant. During night, there are again cold biases in

the early lead times below the 8th model level (Figure 6.3b). In contrast to day,

there are significant cold biases at the surface through all lead times. During night

there is a significant warm bias between the 10th and 14th model levels through

all lead times after 6 hours. At the later lead times (after 60 hours) these biases

are strongest, approximately 2 ms−1, and extend through a deeper layer, from the

7th model level through the 17th model level. Aloft there are sporadic warm and

cold biases during both day and night with some of these biases significant.

Relative humidity biases during the day are predominantly moist except for

between the 10th and 15th model levels after 36 hours (Figure 6.3c). In this

area, at these lead times biases are small or slightly negative, but not significant.

Below the 10th model level biases are significant and below 10 %. Above the 20th

model level biases are significant, up to 15%. During night, (Figure 6.3d), there

are distinct significant dry biases, of 5-10 %, between the 9th and 14th model

levels, after the 24 hour lead time. This region of biases is co-located with warm

temperature biases. Above and below this, biases are the same as during day.

Vertical profiles of low-level temperature are well forecast at the early lead times

except for in the lowest levels where forecast profiles have weaker lapse rates than
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Figure 6.3: As in Figure 6.1, except for the IC subset.
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those observed (Figure 4.1e and 4.1f). At later lead times temperatures increase

resulting in the warm biases through the low levels at later lead times during day.

During the night, lower observed temperatures are not reproduced in AMPS in a

layer between 800- and 900-hPa. Since dew point profiles are well-forecast in this

layer, this results in dry relative humidity biases. During day, dew point profiles

are high through all levels and there is an increase of dew points with lead time.

There are two clear patterns in wind speed biases in the IC subset (Figures

6.3e and 6.3f). The first pattern is a region of low-level slow biases. These are

predominantly at the surface and first 3 model levels but there are also biases

during the day through the 10th model level before 24 hours lead time. For most

lead times the surface biases are significant. The second bias is an area of fast

wind speeds aloft, primarily at the later lead times, between 72 and 96 hours.

The lack of any large biases in the wind speeds is portrayed in low-level vertical

profiles of wind speed (Figures 4.2e and 4.2f). Similar to the HP and LE subsets,

there are slow wind speeds at the surface as a result of too large of a decrease in the

winds below the LLWM. The LLWM and winds above this are overall accurate.

6.4 Inversions

Since one of the primary issues for AMPS forecasts of temperature and dew point

is the inversion we now focus our analysis on this feature of the Antarctic environ-

ment. Biases related to inversions vary strongest in the first 24 hours of the model

integration (Figures 6.1a, 6.1b, 6.2a, and 6.2b). Therefore we hypothesize that the

initial conditions, are a significant cause of the poorly represented inversions. As

such, the same analysis is carried out on the GFS forecasts from which the initial

conditions are provided for AMPS.

The 95% confidence intervals for AMPS forecast biases of temperature and dew

point inversion strength (in red) during day and night, in both the LE and HP
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Figure 6.4: Mean Inversion strength (IS) biases for temperature, (a) day and HP,

(b) temperature, night and HP, (c) dew point, day and HP, (d) dew point, night

and HP, (e) temperature, day and LE, temperature, (f) night and LE, (g) dew

point, day and LE, and (h) dew point, night and LE. AMPS is in red, GFS is in

blue, and ERA is in green. Error bars indicate the 95% confidence intervals.
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subsets are shown in Figure 6.4. With the exception of the 0 hour lead time for

temperature during night in both subsets (Figures 6.4b and 6.4f), and the 96 hour

lead time for temperature during night in the LE subset (Figure 6.4f), there are

negative (weak) inversion strength biases in AMPS over the continent. Overall

AMPS forecast inversions are weaker than the observed by 0-10 K.

For both subsets and both variables, AMPS inversions are less variable during

the day (relative to night) since there are larger confidence intervals at night.

The only significant difference between AMPS biases during day and night is for

temperature inversions in the HP subset. AMPS temperature inversion biases

range from 4-7 K during day and 0-6 K during night with significant differences at

most lead times. Overall, AMPS dew point inversions have weaker inversion biases

than temperature inversions with these differences significant at most lead times,

both subsets, and during both day and night. Mean inversion biases are 2-5 K

weaker in dew point inversions than temperature inversions. With the exception

of AMPS temperature inversions during night (Figures 6.4b and 6.4f), the HP

subset has weaker inversion biases than the LE subset. Mean inversion biases are

1-5 K weaker in the HP subset than in the LE subset.

The 95% confidence intervals for AMPS forecast biases of temperature and dew

point inversion depth are shown in Figure 6.5. During the early lead times (0 and

6 hours) AMPS mean forecast inversion depth biases are positive (i.e. on average

inversions are too deep in AMPS relative to the observations). Given the confidence

intervals at these early lead times, deep biases are significant in the HP subset, and

at night in the LE subset for temperature inversions (Figure 6.5f). AMPS inversion

depth biases at the 0 hour lead time range from -100 to 350m, with mean biases of

0 to 200 m (dependent on subset and variable). After the 0 hour lead time, AMPS

inversion depth biases transition from the deep biases discussed to either negative

(shallow) biases or no bias. Between the 24 and 48 hour lead times (depending on
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Figure 6.5: As in Figure 6.4 but for inversion depth (ID).
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subset and variable) biases stop this transition and remain approximately constant

for the rest of the model integration. Inversion depth biases after 48 hours range

from -200m to 100m, with mean biases of -25 to -175 m. AMPS inversion depth

biases are more variable during night than day as shown by narrower confidence

intervals during day. There is little difference between temperature and dew point

inversions over the continent, or between inversions in the HP and LE subsets.

When comparing AMPS depth biases at early lead times (0 and 6 hours) to

GFS depth biases there are clear similarities between the two models. In all subsets

confidence intervals indicate that inversion depth biases are very similar if statis-

tically indistinguishable. Since AMPS initial conditions are provided by the GFS

this is expected. It also implies that the data assimilation process in AMPS does

not correct the inversion depth from the incorrect GFS initial conditions. While

inversion strength biases at early lead times are similar between AMPS and GFS

in the LE subset, they are significantly different in the HP subset. Here, AMPS

biases are significantly lower suggesting there is correction in the data assimilation

process to the inversion strength that improves the poor GFS initial conditions.

This in turn appears to result in better forecast inversion strengths in the HP

subset throughout the model integration.

In the IC subset, since inversion depth and strength are only on average 328.1 m

and 4.5 K respectively (see Table 4.1 for values separated by day/night), there are

few significant biases in inversion structure (not shown). However there are biases

in the frequency of occurrence for the IC subset. For temperature inversions during

day the observed occurrence is just below 0.5 of the subset throughout the model

integration (Figure 6.6a). The occurrence of biases in AMPS are similar to this

with just over 0.5 forecast during the 0 hour period and approximately the same

as AMPS through the model integration. For temperature inversions during night

the observed relative occurrence is 0.6 at the 0 hour lead time and 0.4 at later lead
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Figure 6.6: Fraction of inversions forecast as a total of the whole subset in the IC

subset for (a) temperature during day, (b) temperature during night, (c) dew point

during day, (d) and dew point during night. Observations are in black, AMPS is

in red, GFS is in blue, and ERA is in green.
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times (Figure 6.6a). AMPS forecasts too many inversions throughout the model

integration, with a relative occurrence 15-25 % more frequent than the observations

throughout.

Figures 6.6c and 6.6d shows the relative occurrence of dew point inversions

during day and night respectively. During day the relative occurrence is 0.3 during

the 0 hour lead time and 0.4 at later lead times. During 0 and 6 hours lead time

the relative occurrence in AMPS is 0.45 and 0.15 larger than the observations

respectively. At later lead times AMPS forecasts are approximately the same as

the observations. During night dew point inversion relative occurrence is 0.6-0.5

with AMPS relative occurrence similar throughout.

6.5 Low-level Wind Maxima

A second area noted as an issue is the low-level wind maximum (LLWM) wind

speed maximum associated with the katabatic flow; a prominent feature in the

Antarctic boundary layer. Here we report and discuss the biases in AMPS associ-

ated with LLWMs.

Figure 6.7 shows the LLWM maximum wind speed 95% confidence intervals

for the HP and LE subsets. With the exception of a few lead times the LLWM

maximum wind speeds are significantly slow in the HP subset (Figures 6.7a and

6.7b). On average the LLWM maximum wind speed is approximately 1-2 ms−1

too slow throughout. This represents a maximum wind speed that is 6-12% slower

than those observed (Table 4.2). LLWM maximum wind speeds are also slow in the

LE subset, although this result is not significant since there is greater uncertainty

in the results for the LE subset represented by larger confidence intervals. Here,

the biases are again 1-2 ms−1 on average, which represents wind speeds that are

7-13% slower than those observed (Table 4.2). There is little change with lead time

throughout the model integration in any of the subsets (Figures 6.7c and 6.7d).
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Figure 6.7: Mean LLWM maximum wind speed biases for (a) HP and day, (b)

HP and night, (c) LE and day, (d) LE and night. AMPS is in red, GFS is in blue,

and ERA is in green. Error bars indicate the 95% confidence intervals.
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Figure 6.8: As in Figure 6.7 but for LLWM height.

There are no significant biases in the IC subset for LLWM maximum wind speeds

(not shown).

LLWM height biases are shown in Figure 6.8. There are few LLWM height

biases throughout the model integration with the only significant biases occurring

at early lead times (0 and 6 hours) in the HP subset (for both day and night)

and also at later lead times in the HP subset during day (Figures 6.8a and 6.8b).

At the 0 hour lead time when biases are largest, they are on average 100-150m.

There are no significant LLWM height biases in the LE subset with biases that are

approximately zero or slightly less on average (Figures 6.8c and 6.8d).

Throughout all subsets LLWMs are predominantly forecast with low occurrence

relative to observations (Figure 6.9). AMPS forecasts too few inversions by a

relative occurrence of 0-0.3 throughout all subsets. The only exception to this bias

is in the LE subset during night at the 0 hour lead time. However there are only
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10 profiles in this subset so the statistical significance of this result is low. The

largest relative occurrence biases of -0.3 occur during the 0 hour lead time in the

HP and IC subsets. In the LE subset during the 0 hour lead time AMPS forecasts

approximately the correct number of inversions. There are no trends in AMPS

forecasts of LLWM occurrence with lead time.

6.6 Discussion

Chapter 5 provides a broad overview of the errors associated with AMPS. In partic-

ular, during this chapter we noted distinctly high mean biases, standard deviation

biases, and errors, and low skill close to the surface in nearly all variables, espe-

cially over the continent. These statistics suggest that the area of poorest forecast

performance in AMPS occurs in the boundary layer over the continent, with par-

ticularly large biases over the high plateau. Also, there were large errors that

coincided with the position of the upper level jet stream in all subsets. Large

changes between the 1 and 2 day lead times indicate that after 2 days the position

of the upper-level jet may be inaccurate in AMPS.

Patterns of biases in Chapter 6 build on the picture provided in Chapter 5.

There are some persistent biases in AMPS analyses and forecasts that are co-

located with large values of the other statistics shown in Chapter 5. Key biases

over the continent include biases associated with low-level inversions and winds,

which are strongest over the high plateau. Over the ice surrounding the continent,

the clearest biases are the warm and dry biases atop the boundary layer. In this

section we will discuss these issues and propose causes.

One of the key points noted in Chapter 5 is the large changes in model forecast

conditions at early lead times. In the first 1-2 days of the model integration there

are rapid changes in temperature and dew point biases. Further, there are rapid

changes to the inversion depth during the first 1-2 days of the model integration.
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These changes suggest one point; there are biases associated with the analysis

that are altered or corrected later in the forecast and the model spin-up period to

remove these biases is around 1-2 days.

Biases at early lead times noted in Chapter 6 include the couplet of warm and

cold biases at early lead times over the continent associated with poor estimation

of strong observed inversions. Further analysis of the inversions showed that the

deep inversion biases at early lead times are associated with the initial conditions

provided by GFS. Since biases are similar to the GFS, it is likely that the lack

of observations discussed in Section 2.2 is affecting the analysis, through little

correction to the GFS initial conditions (NCEP’s Global Data Assimilation System:

GDAS). Therefore, early lead time errors emphasize the requirement for more in-

situ low-level observations over Antarctica to improve data assimilation through

more corrections to the initial state provided by GDAS, especially over the high

plateau. However this is a very costly solution to the initial condition problem.

Therefore other solutions should be sort. Such initial condition problems could be

alleviated or removed through more advanced data assimilation systems than the

current WRF three dimensional variational system (WRF 3D-Var Barker et al.,

2006). Liu and Xiao (2013) show how in replacing the homogeneous and isotropic

background error covariance used by the standard WRF 3D-Var, with a flow-

dependent background error covariance in an ensemble four-dimensional variational

system, analysis and forecast accuracy are both improved. This improvement is

partly made through the inclusion of more observations and utilizes the current

limited observational network over Antarctica more efficiently.

At later lead times, after the 1-2 day spin-up period, low-level biases dominate

the forecast problems with positive temperature, dew point, and relative humidity

biases caused by weak inversions over the continent in the HP and LE subsets.

Temperature and dew point biases also increase with lead time. Further, there

61



was also low variability and skill, and high errors in temperatures and dew points

close to the surface at early lead times. A ubiquitous surface of ice and snow over

the continent leads to high fluxes of heat from the atmosphere to the surface. All

the discussed issues imply that there are upward sensible and latent heat fluxes

are too strong in AMPS forecasts. Such flux errors therefore imply that land

surface temperatures may be incorrect. Slow wind speeds in AMPS could imply

low mixing which in turn would lead to the warm and moist surface temperatures.

Further, shallow inversions in the forecast imply low vertical mixing since the large

surface properties are not advected as high. There are also differences between

biases during day and night which imply that radiative properties of the surface

are incorrect. Surface biases of temperature and dew point are consistent with

the surface biases presented in Bromwich et al. (2013b), the only other study with

comparable evaluations of Polar WRF over the continent, at many sites during

autumn. These results suggest that parameterization of the strongly stratified

boundary layer over the Antarctic interior is inaccurate, with multiple issues.

The only notable issue AMPS encounters in forecasting over sea ice is an over

prediction of temperature inversions during night. Since GFS provides the initial

conditions and GFS also over-forecasts inversions at early lead times it is possible

that the over-forecast in AMPS is a result of poor initial conditions as already

discussed. Alternatively the cold surface biases could be the cause of an over-

forecasting of inversions. Cold surface biases imply high downward surface fluxes,

a known issue in modeling the stable boundary layer as discussed by Holtslag et al.

(2013).

In addition, the low-level kinematic properties in AMPS are incorrect, with slow

surface wind speed biases through all subsets of the data (but are most prominent

over the HP subset). Such surface wind speed biases suggest a high surface drag

in the model although this is inconsistent with Bromwich et al. (2013b) who shows
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positive wind speed biases. Further, other studies suggest that WRF exhibits low

surface drag and positive surface wind speed biases over plains and valleys (Jiménez

and Dudhia, 2012). However, it is noted that other studies have not evaluated

WRF over the unique environment of Antarctica and many of the observations

from Bromwich et al. (2013b) are coastal representing only a very specific area of

the Antarctic atmosphere. It is shown by Kumar et al. (2012) that Polar WRF

exhibits similar slow wind speed biases over the Maitri region of Antarctica. Given

contrasting results, the result presented here should be validated through further

evaluation over the Antarctic.

In a summary of AMPS forecasts for LLWMs, biases are largest in the HP

subset with the wind speed maximum too weak and the LLWM displaced vertically

from that observed during day, significant only in the HP subset. Further, AMPS

forecasts too few LLWMs throughout the model integration. Since the katabatic

wind is a function of the surface fluxes, slope, and the surface drag, and discussed

previously is likely low, this is the likely source of error for the katabatic flow.

However, the low level warm biases encountered over the continent could also

account for the low wind speeds in the katabatic flow through increased buoyancy.

Qualitatively, these two factors likely account for the slow katabatic maxima over

the continent that is significant over the HP. There are no model evaluations that

focus on the katabatic flow over the continent.

Finally, a warm and dry bias between approximately 750- and 900-hPa over the

sea ice during night (and to a much lesser extent in other subsets) is hypothesized

to be the result of a forecast low cloud fraction in AMPS. Qualitatively the dry

bias is expected to be the result of low water vapor concentration, while the warm

bias is expected since there would be less radiative cooling in the model (relative

to reality) given a lower cloud fraction. Further, this is in a layer where low

cloud is observed in abundance over the sea ice and Antarctica’s low elevations
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as discussed by Bromwich et al. (2012). A low cloud fraction in NWP models

over the southern ocean and Antarctica is a known problem that has been studied

relatively heavily in the literature. In AMPS, this problem was first diagnosed

in 2008 when Fogt and Bromwich (2008) documented a low cloud fraction over

McMurdo. Fogt and Bromwich (2008) attempted to fix this error by developing a

new empirical cloud fraction algorithm for AMPS. While this algorithm fixed the

cloud fraction bias, it was noted that it also reduced the cloud fraction correlation

with observations. Since then, a low cloud fraction in Polar WRF was diagnosed

by both Bromwich et al. (2013b) and Huang et al. (2014). This problem was also

noted in the Met-Office Unified Model by Bodas-Salcedo et al. (2012) where the

issue was assessed to be the result of a low fraction of stratocumulus on the cold

air side of cyclones. Bodas-Salcedo et al. (2012) developed a new parameterization

that treats shear-dominated boundary layers differently which, to a large extent,

removed the bias. Alternatively, the low cloud fraction could be a result of the

incorrect initial conditions. In Section 6.3 we see that the bias only appears at

lead times later than 36 hours; approximately the model initialization period.

Thus, the boundary layer parameterizations may be correct but since they are

initialized incorrectly, they act to produce an incorrect result later in the forecast.

These theories should be tested in future research through WRF single column

experiments.

While the errors have been emphasized in an attempt to note areas for im-

provement, it is also important to note what was well forecast in AMPS. Above

the surface and first few model levels, there are no large biases in temperature and

wind speed, and overall profiles of these variables are accurate. In particular, errors

over the sea ice area are minimal, especially in forecasts of wind speed, and wind

direction (not shown). When forecasting inversions, a key feature of the Antarctic

low-levels, in most cases AMPS had either the same or a smaller bias than GFS.
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Further, despite small sample sizes there were no notable biases in the open water

and partial sea ice subsets (not shown).
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Chapter 7

A Comparison between AMPS, GFS and

ERA-Interim

In this section we compare Concordiasi profiles to AMPS, GFS and ERA-Interim

profiles with the aim to evaluate AMPS with respect to a larger spectrum of

analysis estimates. Similar to Section 6 we separate the biases by the surface type

(HP, LE, and IC). Here we present statistics for the 6 hour and 72 hour lead times.

The aim of the 6 hour lead time is to provide a comparison at the earliest forecast

lead time where all 3 models can be compared. The aim of the 72 hour lead time

is to provide a comparison at a later lead time when the initial condition impact

is further removed.

7.1 Continental High Plateau (HP)

Figure 7.1 shows statistics for temperature, dew point and wind speed in the HP

subset. The area contained within each plume represents the area encompassed by

the 95 % confidence interval calculated from 1000 bootstrapped samples of each

statistic for the 6 hour forecast of each model.

At the surface, the skill of temperature forecasts is best in AMPS close to the

surface and skill is only significantly better than ERA (Figure 7.1j). Higher skill in

66



AMPS at the surface corresponds with smaller magnitude mean bias and standard

deviation bias (Figures 7.1a and 7.1d respectively). It is notable that the mean

surface temperature biases in GFS and ERA are larger. Such warm mean surface

biases are consistent with the inversion biases, where there are significantly weaker

inversions in GFS and ERA than in AMPS (Figures 6.4a and 6.4b). GFS has

significantly worse skill than AMPS and ERA between the 7th and 10th model

levels, above the SBI. These areas of low skill correspond with cold biases that are

significantly larger in GFS than AMPS or ERA. Given that there are larger biases

at the bottom and top of the mean inversion this also suggests that GFS produces

weaker inversions than AMPS. This is consistent with the temperature inversion

strength biases in Figures 6.4a and 6.4b where there are significantly stronger

biases in GFS at the 6 hour lead time during both day and night. Alternatively

it could indicate a deeper inversion, a result also confirmed in Figures 6.5a and

6.5b. ERA temperature inversion depth biases are not significantly different from

AMPS which possibly accounts for the lack of significantly different ERA biases

atop the inversion (Figures 6.5a and 6.5b). Above the 10th model level there are

no significant differences in any statistics. Additionally there are no significant

differences in CRMSDs between any of the models.

There are no significant differences between any of the models for MSESS in

72 hour forecasts of dew point (Figure 7.1k). Throughout the column AMPS has

significantly smaller magnitude mean biases than both GFS and ERA above the

13th model level. At the surface AMPS also has significantly smaller biases than

GFS. At 6 hours ERA and AMPS produce significantly stronger mean inversion

strength than GFS (e.g. there inversion strength biases are closer to that observed;

Figure 6.4). AMPS also has significantly smaller inversion depth biases than GFS

(Figure 6.4). Stronger inversions in AMPS and ERA are consistent with the dew

point biases where there are larger surface biases in GFS. Standard deviation
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Figure 7.1: The 95% confidence intervals calculated from 1000 bootstrapped sam-

ples for (a,b,c) mean bias, (d,e,f) standard deviation bias, (g,h,i) CRMSD, (j,k,l)

Correlation, and (m,n,o) MSESS and (a,d,g,j,m) temperature, (b,e,h,k,n) dew

point, and (c,f,i,l,o) wind speed. Statistics represent the HP subset for AMPS

(red), GFS (blue), ERA-interim (green).
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biases are not significantly different at any level although AMPS does have smaller

standard deviation biases on average (Figures 7.1b and 7.1e respectively). There

is little difference in errors between any of the models for forecasts of dew point

(Figure 7.1h).

Skill for forecasts of wind speed is similar between all models above the 5th

model level (Figure 6.1l). However, between the 2nd and 5th model levels AMPS

MSESS is significantly larger for wind speed than both GFS and ERA. This co-

incides with significantly smaller biases in AMPS between the 2nd and 7th model

levels relative to GFS and ERA (Figure 7.1c). Further, there are also smaller stan-

dard deviation biases in AMPS around the 5th model level (Figure 7.1c). These

biases are co-located with the average position of the LLWM (or katabatic flow)

discussed in Section 3.4 and throughout Chapter 6. Further, LLWM maximum

wind speeds have significantly smaller biases in AMPS than in GFS or ERA at 6

hours during day (Figure 6.7). The height of the LLWM at 6 hours, during both

day and night, is also significantly lower (and closer to that observed) in AMPS

relative to GFS or ERA (Figure 6.8). Further, at 6 hours during both day and

night AMPS produces more accurate relative occurrence of the LLWMs than ei-

ther GFS or ERA by 0.2-0.4. These results indicate that improved skill in AMPS

in the low-levels (relative to GFS or ERA) is due to better representation of the

LLWMs. This occurs through faster wind speeds and greater variability in the

LLWM, more frequent occurrence of the LLWM, and better representation of the

LLWM height for forecasts in AMPS (relative to GFS and ERA). There is little

difference between 6 hour forecast errors in any of the models (Figure 7.1i).

Figure 7.2 shows statistics for AMPS and GFS forecasts at 72 hours lead time.

MSESS for 72 hour forecasts of temperature between AMPS and GFS is similar

above the 10th model level (Figure 7.2j). However, below that level there are

significant differences between AMPS and GFS. MSESS in GFS has a local minima
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Figure 7.2: As in Figure 7.1 but for forecasts at 72 hours lead time.
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at the 6th model level while there is no minima in AMPS. This leads to better skill

in AMPS between the 5th and 8th model levels. The local minima in GFS forecast

skill coincides with a large GFS cold bias that does not occur in AMPS (Figure

7.2a). Below the 4th model level GFS biases tend toward the same biases as AMPS

such that at the surface there is no significant difference in 72 hour temperature

biases between the two models. Weaker GFS mean biases below the 4th model

level are simply an artifact of the incorrect forecast of inversions. In Figures 6.4a

and 6.4b, and 6.5a and 6.5b, we showed that GFS inversions have weak and deep

inversions at 72 hours throughout the HP subset. Thus temperature lapse rates

in the inversions are much weaker than in AMPS. This leads to the strong cold

biases atop the SBI and warm biases at the surface in GFS at 72 hours lead time.

Thus any weaker temperature biases in GFS at these levels are simply an artifact

of a weak temperature inversion. In addition there are also significantly weaker

standard deviation biases at the surface in AMPS indicating AMPS forecasts are

consistently less biased (Figure 7.2d). There is little difference between errors in

the two models at 72 hours (Figure 7.2g).

There are no significantly different MSESS values between AMPS and GFS

for 72 hour forecasts of dew point, and skill throughout both models is poor to

average (Figure 7.2k). There are some significantly weaker mean biases in GFS

between the 4th and 6th model levels. However, this produces a larger spread of

mean biases between the surface and the top of the average inversion indicating

weaker inversions in GFS. There are weaker mean inversion biases during night

although there are none during day at the 72 hour lead time (Figures 6.4c and

6.4d). Further there are also significantly deep mean inversion biases in GFS at

72 hours during both day and night (Figures 6.5c and 6.5d). Thus significantly

weaker and deeper inversions in GFS result in the larger spread of biases in GFS.

Further, there are stronger (although not significant) negative standard deviation
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biases below the 3rd model level in GFS relative to AMPS indicating low bias is

consistent in AMPS (Figure 7.2e). There are no significant differences between the

two models in errors although there are on average larger errors in AMPS between

the 8th and 16th model levels (Figure 7.2h).

Wind speed MSESS at the 72 hour lead time is significantly different between

AMPS and GFS below the 6th model level (Figure 7.2l). Here skill is much worse

than climatology in GFS and is average to poor in AMPS. Above there are no

significant differences in MSESS. Distinctly higher skill in AMPS between the 2nd

and 5th model levels coincides with significantly weaker slow mean biases, and

weaker negative standard deviation biases, at levels co-located with the LLWM

maximum (Figures 7.2c and 7.2f). Further at the 72 hour lead time GFS has sig-

nificantly larger LLWM maximum wind speed and height biases. GFS produces

LLWMs that are both weaker and at a higher height than the LLWMs in AMPS

and those observed. In addition GFS forecasts far fewer inversions than AMPS

and than observed. The relative frequency of occurrence for LLWMs in GFS is ap-

proximately 0.3 lower than observed and 0.2 lower than AMPS (Figure 6.9). Thus

at the 72 hour lead time skill is better in AMPS due to lower biases and improved

variability relative to GFS. Further, representation of the LLWM is much better in

AMPS. There are few differences in errors between the two models although there

are on average higher errors in AMPS between the 10th and 20th model levels

(Figure 7.2i).

7.2 Continental Low Elevations (LE)

There are few differences between any of the models for 6 hour forecasts of temper-

ature over the continental low elevations (Figures 7.3a, 7.3d, 7.3g, and 7.3j). The

only notable differences are in the mean biases with GFS producing the weakest

mean surface biases, significantly better than ERA (but not AMPS). Thed biases
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are consistent with biases of inversion strength where there are no significant differ-

ences between forecasts for models at early lead times although there are notably

larger biases in ERA than GFS (Figures 6.4e and 6.4f). There are also no signifi-

cant differences in the biases of inversion depth at early lead times although ERA

has notably weaker biases than GFS (Figures 6.5e and 6.5f).

Skill for 6 hour forecasts of dew point is not significantly different anywhere

in the column (Figure 7.3k). In the mean biases there are also no significant

differences between the models although ERA surface mean biases are on average

smaller than AMPS and GFS (Figure 7.3b). There are no significant differences

between any of the models for early lead time forecasts of inversion strength or

depth (Figures 6.4g and 6.4h, and Figures 6.5g and 6.5h respectively). Further

there are no significant differences between the models for standard deviation biases

and CRMSDs (Figures 7.3f and 7.3i).

Wind speed MSESS varies little between the models (Figure 7.3l). However

there are significant differences in the biases between the 2nd and 5th model levels

(Figure 7.3c). Here there are significantly weaker biases in AMPS than in GFS

or ERA. Similar to the HP subset this difference in mean bias occurs at levels co-

located with the maxima in the LLWM. In addition, there are also weaker standard

deviation biases on average at these levels although this difference is not significant

(Figure 7.3f). AMPS has significantly lower LLWM maximum wind speed biases

than ERA and although AMPS biases relative to GFS are not significantly differ-

ent, they are smaller by around 2 ms−1. Further there are no LLWM height biases

in AMPS during day or night while there are biases of approximately 100-200 m

in GFS and ERA. The relative frequency of occurrence during night is the same

in all models, approximately 0.1 less than the frequency observed. During day

however AMPS has better relative occurrence of LLWMs than both AMPS and
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Figure 7.3: As in Figure 7.1 but for the LE subset.
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ERA. Again there is evidence to suggest that the AMPS 6 hour forecasts of the

LLWM are better than in GFS or ERA.

There are no significant differences between AMPS and GFS in MSESS for 72

hour forecasts of temperature in the LE subset (Figure 7.4j). The only significant

differences between AMPS and GFS in statistics for 72 hour forecasts of temper-

ature are in the mean biases where there are cold biases throughout the column

in GFS (except at the surface) and warm biases below the 12th model level in

AMPS (Figure 7.4a). In the LE subset at later lead times (after 48 hours), tem-

perature inversion strength and depth biases are smaller in magnitude in the LE

subset relative to the HP subset (Figures 6.4e and 6.4f, and 6.5g and 6.5h, respec-

tively). This accounts for the improvement of mean temperature biases in GFS,

with AMPS and GFS biases similar above the surface while GFS has no biases at

the surface. There are better standard deviation biases on average in GFS below

the 10th model level indicating more accurate variability in AMPS (Figure 7.4d).

There are no major differences between AMPS and GFS 72 hour forecasts with

regard to CRMSDs (Figure 7.4g).

MSESS for 72 hour forecasts of dew point are not significantly different (Figure

7.4k). The only significant difference in 72 hour forecasts for dew point statistics

are in the mean biases where AMPS has significantly larger warm biases below

the 5th model level (Figure 7.4b). At 72 hours there are no significant differences

between the models for forecasts of inversion strength although at later lead times

there are significant differences at night with greater biases in AMPS (Figure 6.4h).

At later lead times, GFS depth biases are not significant while there are shallow

AMPS inversion depth biases (Figures 6.5g and 6.5h). There are no significant

differences in either standard deviation biases or in CRMSDs, although AMPS has

slightly smaller standard deviation biases on average between the 5th and 25th

model levels (Figures 7.4e and 7.4h).
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Figure 7.4: As in Figure 7.1 but for the LE subset and forecasts at 72 hours lead

time.
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While there are no significant differences in MSESS for 72 hour forecasts of

wind speed, this is likely a result of the large amount of uncertainty in MSESS

with both models producing average to poor skill (Figure 7.4l). However, below

the 6th model level, there are significant differences in mean biases and standard

deviation biases (Figures 7.4c and 7.4f respectively). Slow mean wind speed biases

and negative standard deviation biases below the 6th model level are approximately

doubled in GFS relative to AMPS. Similar to the HP subset, these biases are

at the same level as the LLWM indicating a much weaker LLWM in GFS than

AMPS. Although there are no significant differences in most LLWM biases, there

are significantly smaller LLWM maximum wind speed biases in AMPS relative to

GFS during the day. Further, although both models have forecast LLWMs at a

relative occurrence 0.1-0.3 less than observed AMPS, has slightly higher relative

occurrence than GFS through most of the later lead times. There are no significant

differences in CRMSDs between the 2 models but AMPS has on average larger

errors below the 20th model level (Figure 7.4i).

7.3 Permanent Ice Shelves and Sea Ice (IC)

On average below the 6th model level MSESS in 6 hour forecasts of AMPS tem-

perature in the IC subset are worse than ERA, but better than GFS, although

not significant (Figure 7.5j). Improved skill in ERA at these levels also coin-

cides with significantly smaller ERA mean biases and CRMSDs (Figures 7.5a and

7.5g respectively) and weaker standard deviation biases on average although not

significant (Figure 7.5d). In addition ERA has a different structure of biases to

AMPS and GFS. There are small but significant cold biases at the 13th model

level where AMPS has warm and dry biases, and no bias in the lowest 6 model

levels where AMPS has significant cold biases. Cold surface biases in AMPS and
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GFS are consistent with the inversion occurrence biases showing temperature in-

versions are forecast too frequently in both models. In comparison, ERA forecasts

approximately the correct number of inversions, which is consistent with the mean

temperature biases since it has smaller biases than AMPS and GFS.

MSESS for 6 hour forecasts of dew point are not significantly different between

the three models although ERA has on average larger skill than AMPS and GFS

(Figure 7.5g). There are no mean biases in ERA below the 13th model level

while there are mean biases in AMPS and GFS at these levels. Above the 8th

model level AMPS and GFS biases are positive while below the 5th model level

they are negative. Mean biases are zero for all models between these levels simply

because the AMPS and GFS biases are varying from negative in the upper levels to

positive in the lower levels. There are no significant differences between inversion

strength and depth biases (not shown). However there are differences in inversion

occurrence. At 6 hours all models over-forecast the number of inversions, consistent

with the small negative dew point biases at the surface. GFS has the worst results

at night but the best during day while ERA and AMPS have similar results. At the

0 hour lead time AMPS over-forecasts by 0.4 although this is possibly a bi-product

of the small sample size at early lead times. Below the 5th model level, of the 3

models, ERA has negative standard deviation biases while AMPS and GFS have no

significant standard deviation biases although there are no significant differences

between the models (Figure 7.5e). Errors are smallest in ERA and this difference

is significant below the 5th model level. Thus increased skill in ERA for dew points

over ice is a product of lower mean biases and lower errors although these results

are not significant.

There are no significant differences between any of the models with respect to

wind speed MSESS, however ERA has notably greater MSESS values than either

AMPS or GFS above the 4th model level (Figure 7.5l). This higher skill coincides
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Figure 7.5: As in Figure 7.1 but for the IC subset.
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with notably lower errors in ERA than either AMPS or GFS although none of

these differences are significant (Figure 7.5i). Throughout most of the column

there are no significant mean biases in wind speed. However, between the 2nd

and 5th model levels there are significantly lower biases in AMPS when compared

to GFS and there are notably smaller biases in AMPS when compared to ERA.

Again, this corresponds to the level of the LLWM suggesting AMPS is more reliable

at forecasting the higher wind speeds. There are no significant biases in any of

the models for LLWM maximum wind speed or height. However all models have

relative occurrence that is 0.1 - 0.2 too low for LLWMs at 6 hours. There are no

significant differences in regard to wind speed standard deviation biases.

MSESS for 72 hour forecasts of temperature are significantly different between

AMPS and GFS only below the 3rd model level (Figure 7.6j). At the surface AMPS

skill is average (MSESS of 0.4 - 0.65) while GFS skill is poor (MSESS of -0.3 - 0.4).

Significant differences in skill at the low-levels coincide with significant differences

in mean biases (Figure 7.6a; AMPS mean biases are -1 - 0.3 while GFS mean biases

are -5 - -3) and significant differences in standard deviation biases (Figure 7.6d;

AMPS mean standard deviation biases are -0.8 - 0.3 while GFS mean standard

deviation biases are 1 - 2.4). These statistics indicates that low-level forecasts of

AMPS temperature improve upon GFS forecasts through much smaller bias and

better variability. Further, AMPS forecasts of temperature inversion occurrence

are more accurate than GFS forecasts (Figures 6.6a and 6.6b). The frequency of

inversion occurrence in GFS is double that of the observed at night and 0.2 more

than the observed during day in contrast to AMPS with accurate forecasts during

the day and only a 0.2 bias during night. This is consistent with the mean biases

where GFS has a strong cold bias at the surface implying the likelihood of more

inversions. There are no significant difference in CRMSDs between the 2 models

(Figure 7.6g).
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Figure 7.6: As in Figure 7.1 but for the IC subset and forecasts at 72 hours lead

time.
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MSESS for 72 hour forecasts of AMPS and GFS dew point are not significantly

different although GFS has on average higher skill above the 3rd model level and

AMPS has on average higher skill below the 3rd model level (Figure 7.6k). There

are significant differences between the mean biases for AMPS and GFS (Figure

7.6). Below the 7th model level mean biases in GFS are dry while in AMPS

they are moist but smaller in magnitude. Above the 15th model level, mean

biases in GFS become moist and larger than AMPS moist biases (although not

significant). The cold low-level mean biases in GFS are consistent with inversion

occurrence statistics at later lead times (24 hours or later) where GFS has 0.1

- 0.3 relative occurrence more than the observed and AMPS relative occurrence

errors are minimal (Figure 6.6c and 6.6d). Standard deviation biases at the surface

significantly different; they are negative in AMPS and positive in GFS. Above this,

there are no significant differences (Figure 7.6e). Although the differences are not

significant CRMSDs are smaller in GFS possibly accounting for the increased skill

in GFS above the 5th model level (Figure 7.6h).

There are no significant differences in MSESS between AMPS and GFS for

72 hour forecasts of wind speed (Figure 7.6l). However, it is notable that GFS

has relatively higher skill than AMPS. This higher skill in GFS coincides with

notably lower errors in GFS relative to AMPS, although again this difference is not

significant (Figure 7.6i). The only significant difference between the two models

occurs in the mean biases between the 2nd and 4th model levels (Figure 7.6c).

Here the low-level slow biases in both models are weaker in AMPS than GFS.

Similar to the HP and LE subsets these biases are co-located with the LLWM.

Similar to the early lead times there are no significant biases in forecasts of LLWM

maximum wind speed or height but there are errors in the relative occurrence of

LLWMs. Throughout the later lead times both AMPS and GFS have low relative

occurrence, although AMPS relative occurrence is not as low as GFS. At higher
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model levels there are no significantly different biases. In addition there are no

significantly different biases in standard deviation (Figure 7.6f).

7.4 Discussion

In this chapter we have discussed the differences between 6 and 72 hour forecasts

of AMPS, GFS and ERA-Interim. There are a number of instances where AMPS

either outperforms or is outperformed by one or both of GFS or ERA. The features

that were captured with the best skill in AMPS included some of the key Antarctic

low-level features: inversions, especially over the continent, and the LLWM. ERA

however, outperformed AMPS and GFS in some instances, specifically over the sea

ice.

In the HP subset, at early lead times surface biases of temperature and dew

point are positive in all models. Overall AMPS has the smallest surface tempera-

ture and dew point biases, with the most accurate variability. In addition there are

weak and deep inversion biases in all models at early lead times. AMPS however

shows less biased temperature inversion strength than GFS or ERA. In the LE sub-

set results are similar but more varied. Therefore in all models we see that there

are similar problems with early lead time forecasts of the low-level temperature

and dew point structure. Atlaskin and Vihma (2012) compared the wintertime

(snow-covered surface) nocturnal boundary layer structure in Finland for a num-

ber of models including GFS and the ECMWF IFS (on which ERA-Interim is

designed). They showed that when a strong temperature inversion was observed,

the models underestimated it, consistent with the results here and those shown by

AMPS. Other results from this study showed that the warm bias in 2 m tempera-

ture forecast during periods of observed temperature inversion partly resulted from

a warm bias in the initial conditions. The warm bias was due to problems in data

assimilation in IFS and GFS. In addition Zhang et al. (2011) showed that ERA
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underestimates inversions in Spring, also similar to the results here. In particular,

the IFS data assimilation increased the 2 m temperature bias. Fréville et al. (2014)

show that the warm biases in ERA over Antarctica are due primarily to an over-

estimation of surface turbulent fluxes in strongly stratified conditions. Numerical

experiments with Crocus, a snowpack model, forced by ERA-Interim showed that

a small change in the parameterization of the effects of stability on the surface

exchange coefficients can significantly impact the snow surface temperature. Thus

they conclude that the ERA-Interim warm bias appears to be likely due to an

overestimation of the surface exchange coefficients under very stable conditions.

Gallée and Gorodetskaya (2010) ran simulations at Dome C, Antarctica using the

MAR (Modèle Atmosphérique Régional). This model also showed weak surface

based inversions and warm surface temperatures. Thus the warm biases in AMPS,

GFS, and ERA are likely an issue with both surface layer parameterization and

data assimilation, an issue that is persistent through the models in this study and

others.

At later lead times AMPS and GFS have very different low level biases, with

shallow and weak AMPS inversions, and deep and weak GFS inversions. These

result in inaccurate temperature and dew point forecasts for both models although

overall AMPS has smaller biases atop the inversions as a result of the deep GFS

inversions. Atlaskin and Vihma (2012) showed over snow in Finland that 2 m tem-

perature biases in the integrated forecast system (IFS) and GFS increase through

lead time, strengthening temperature inversions. This is inconsistent with the

results shown for GFS here where inversion biases are constant throughout lead

time.

Despite slow maximum wind speed biases, high LLWM maxima in some subsets,

low frequency of occurrence, and low variability resulting in low skill for the LLWM

in AMPS, a majority of these statistics are worse in GFS and ERA, especially over
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the high plateau. This results in better forecast performance in AMPS relative to

both ERA and GFS at levels associated with the LLWM. As discussed in Sections

4.1 and 6.6 the LLWMs over Antarctica are often a response to the katabatic

forcing produced by the slope of the surface, cooling of the surface layer air, and

surface drag. Given that surface biases are larger in GFS in all subsets the surface

drag may be higher in GFS resulting in a weaker LLWM. Further, over the high

plateau inversions are weaker and deeper in GFS implying weaker stratification.

This will lead to weaker LLWMs over all subsets. Thus in GFS the weaker and less

skillful forecasts of LLWMs are likely a result of these factors. However, in ERA

there are no consistent differences relative to AMPS across all subsets in regard

to stratification and surface drag and we can therefore not attribute this to either

of these. However, ERA is run at a lower resolution (T255; approximately 80km)

than AMPS which may result in more gradual slopes. Thus the most likely cause

of weaker LLWMs in ERA is the lower grid spacing.

ERA does not exhibit the warm biases associated with the hypothesized low

cloud fraction error in the IC subset. Further dew point biases at these levels

are lower indicating improved representation of water vapor over AMPS or GFS.

Since such biases have been shown by Bodas-Salcedo et al. (2012) (in the Met Office

Unified Model) to be a product of low vertical mixing of stratified shear dominated

boundary layers, parameterization of such boundary layers in ERA is likely better

than AMPS and GFS. There are also smaller temperature and dew point biases and

errors, and lower variability at the surface suggesting improved parameterization

of the boundary layer over sea ice in ERA. Further, ERA also uses a 4DVAR

data assimilation system with flow-dependent background error covariance that

likely spreads information more efficiently than the 3DVAR system utilized by

AMPS. Whether the improvement in ERA is due to improved data assimilation
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or improved parameterization of the boundary layer should be evaluated through

further research.

Overall we show here that the performance of AMPS, GFS, and ERA are

comparable except for in the LLWM where AMPS outperforms both models; in

inversions over the continent where AMPS captures more accurate inversion tops

than GFS; and in the boundary layer over the sea ice where ERA outperforms

both AMPS and GFS.
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Chapter 8

Conclusions

This study utilizes observations obtained from dropsondes during the Concordiasi

field project in order to produce an evaluation of the biases within AMPS forecasts

that has vastly improved spacial coverage of observations relative to previous stud-

ies. Profiles were grouped into a number of categories dependent on geographic

characteristics that include the continental high plateau, the continental low ele-

vations, and ice covered water areas. This methodology allowed the diagnosis of

a number of areas where AMPS exhibits biases and other issues with its forecasts

including:

• The over-representation of inversions at early lead times including the depth

over the continent and the relative occurrence over ice cover. This problem

has been linked to the GFS initial conditions and the weakness of the data

assimilation system to spread the information provided by sparse observa-

tions.

• Multiple issues with parameterizations of the boundary layer including shal-

low inversions over the continent, warm, moist and slow surface biases and

weak katabatic winds. Qualitatively these have been attributed to under-

mixing, weak surface fluxes, and high surface drag.
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• A warm and dry bias between 750- and 900-hPa likely associated with the

previously established problem of an under-representation of cloud in NWP

models over Antarctica.

In addition to diagnosing problems with AMPS forecasts, we produced a com-

parison between Concordiasi, AMPS, GFS, and ERA-Interim in order to further

the knowledge of AMPS performance relative to other models. We show that de-

spite issues with the representation of LLWMs associated with the katabatic flow,

AMPS provides the best representation. Further, there are many differences be-

tween the models in the boundary layer, specifically with inversions and AMPS

forecasts of inversions are biased less than GFS. ERA outperforms both AMPS

and GFS over the sea ice.

While this study focuses on the benefits of Concordiasi in comparing to- and

evaluating AMPS analyses and forecasts, we would also like to emphasize the ben-

efits that Concordiasi can provide in understanding the Antarctic atmosphere. In

Section 4.1 we highlighted the key features observed from Concordiasi in each of

the surface defined subsets we analyzed. In particular, we noted the strong kata-

batic flow and the strong surface based inversions atop the high plateau and over

the sea ice, none of which have been studied before with such a broad spacial cov-

erage. Thus Concordiasi provides an excellent medium through which to analyze

features of the Antarctic atmosphere, that have in the past, only been examined

at specific locations with observations that have mainly been confined to the low

est levels of the atmosphere.

Whilst Concordiasi dropsondes provided a vast spacial coverage of observations,

a lack of temporal resolution in the observations poses a large limitation for this

thesis. We present results in this study only for the September to December pe-

riod, and only during one year. Bromwich et al. (2013b) evaluate Polar WRF with

observations throughout a single year of simulations. They show that statistics
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vary between summer and winter. Thus, the results presented in this thesis are

only representative of the Spring period. To provide a broad spacial and temporal

coverage more observations of this type are required throughout the year. Due to

time and monetary limitations, and also the design of the experiment (the strato-

spheric jet had to be consistent enough for driftsondes not to leave the Antarctic

region and this only occurs during Winter and Spring), it was not possible to get

good temporal resolution of observations from Concordiasi. Therefore further re-

search should focus on improving the design of such experiments and obtaining

more observations similar to Concordiasi throughout the year.

Finally, further research focusing on the performance of AMPS should work

to correct the discussed biases through improved treatment of the surface and

boundary layer within parameterization schemes. One way to test whether surface

biases over the continent are a result of the incorrect parameterization of mix-

ing in the boundary layer would be to perform WRF single column experiments

with Concordiasi profiles used to initialize the simulations. Also, development of

new data assimilation schemes that spread the information provided by the sparse

observational network more efficiently should be a key component to any new de-

velopments in AMPS. We note that despite the focus on key biases here, there are

few major biases above the surface, and over the ice or water. Also, in most subsets

AMPS biases were similar to- or smaller than- those in GFS for our analysis of

inversions.
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